Spaces:
Running
on
L4
Running
on
L4
from src.deepeval.base_task import BaseTask | |
from collections import defaultdict | |
from src.deepeval.utils import accuracy, accuracy_standard_error | |
import ast | |
class TurkishGeneralKnowledgeTask(BaseTask): | |
def __init__(self, model_name): | |
super().__init__("metunlp/turkish_general_knowledge", model_name=model_name) | |
def load_dataset_from_hf(self): | |
dataset = super().load_dataset_from_hf() | |
return dataset | |
def evaluate(self): | |
responses = [] | |
difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0}) | |
total_count = 0 | |
true = 0 | |
for row in self.dataset: | |
total_count += 1 | |
question = row["question"] | |
choices = ast.literal_eval(row["choices"]) # Convert string to list | |
answer_index = row["answer"] # Assuming it's zero-based index | |
difficulty = row["difficulty"] | |
# print(f"Choices: {choices}") | |
# print("Type of choices:", type(choices)) | |
# Categorize difficulty | |
if difficulty <= 3: | |
category = 'easy' | |
elif 3 < difficulty <= 6: | |
category = 'medium' | |
else: | |
category = 'hard' | |
# Create a multiple-choice prompt to encourage index output | |
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)]) | |
instruction = "" | |
message = f"{question}\nChoices:\n{formatted_choices}\n{instruction}\n" | |
#"""Wrap the result between final_answer tags. For example: <final_answer/> letter <final_answer>. | |
#""" | |
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) | |
responses.append(model_answer) | |
# print(f"Correct Answer: {choices[answer_index]}") | |
# print(f"Model Answer: {model_answer}") | |
#TODO: Make the cleaning in the mcqa function | |
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper() | |
# Check if the answer is correct | |
correct_answer_letter = chr(65 + answer_index) | |
# print("Correct Answer Letter:", correct_answer_letter) | |
if correct_answer_letter == model_answer_cleaned: | |
true += 1 | |
difficulty_results[category]['correct'] += 1 | |
difficulty_results[category]['total'] += 1 | |
# Print results categorized by difficulty | |
for category, stats in difficulty_results.items(): | |
calculatedAccuracy = stats['correct'] / stats['total'] if stats['total'] > 0 else 0 | |
print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({stats['correct']}/{stats['total']})") | |
print("Results:", responses) | |
print("Overall Accuracy:", true / total_count) | |
acc = accuracy(true, total_count) | |
acc_stderr = accuracy_standard_error(acc, total_count) | |
return {"acc": acc, "acc_stderr": acc_stderr} | |