model-eval-be / src /deepeval /turkish_general_knowledge_task.py
Ahmet Kaan Sever
Removed unnecessary debug prints and timestamps now return seconds.
8a3d32e
from src.deepeval.base_task import BaseTask
from collections import defaultdict
from src.deepeval.utils import accuracy, accuracy_standard_error
import ast
class TurkishGeneralKnowledgeTask(BaseTask):
def __init__(self, model_name):
super().__init__("metunlp/turkish_general_knowledge", model_name=model_name)
def load_dataset_from_hf(self):
dataset = super().load_dataset_from_hf()
return dataset
def evaluate(self):
responses = []
difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0})
total_count = 0
true = 0
for row in self.dataset:
total_count += 1
question = row["question"]
choices = ast.literal_eval(row["choices"]) # Convert string to list
answer_index = row["answer"] # Assuming it's zero-based index
difficulty = row["difficulty"]
# print(f"Choices: {choices}")
# print("Type of choices:", type(choices))
# Categorize difficulty
if difficulty <= 3:
category = 'easy'
elif 3 < difficulty <= 6:
category = 'medium'
else:
category = 'hard'
# Create a multiple-choice prompt to encourage index output
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)])
instruction = ""
message = f"{question}\nChoices:\n{formatted_choices}\n{instruction}\n"
#"""Wrap the result between final_answer tags. For example: <final_answer/> letter <final_answer>.
#"""
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2)
responses.append(model_answer)
# print(f"Correct Answer: {choices[answer_index]}")
# print(f"Model Answer: {model_answer}")
#TODO: Make the cleaning in the mcqa function
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper()
# Check if the answer is correct
correct_answer_letter = chr(65 + answer_index)
# print("Correct Answer Letter:", correct_answer_letter)
if correct_answer_letter == model_answer_cleaned:
true += 1
difficulty_results[category]['correct'] += 1
difficulty_results[category]['total'] += 1
# Print results categorized by difficulty
for category, stats in difficulty_results.items():
calculatedAccuracy = stats['correct'] / stats['total'] if stats['total'] > 0 else 0
print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({stats['correct']}/{stats['total']})")
print("Results:", responses)
print("Overall Accuracy:", true / total_count)
acc = accuracy(true, total_count)
acc_stderr = accuracy_standard_error(acc, total_count)
return {"acc": acc, "acc_stderr": acc_stderr}