Ahmet Kaan Sever commited on
Commit
66a11b3
·
1 Parent(s): dbf76bc

Added time stamps for cost analysis

Browse files
src/deepeval/base_task.py CHANGED
@@ -6,6 +6,7 @@ import openai
6
  from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor
7
  import torch
8
  from typing import List
 
9
  load_dotenv()
10
  HF_TOKEN=os.getenv("HF_TOKEN")
11
  OPENAI_KEY = os.getenv("OPENAI_API_KEY")
@@ -32,12 +33,15 @@ class BaseTask(ABC):
32
  def load_model(model_name: str, device):
33
  """Loads model and tokenizer once and caches it."""
34
  print(f"Loading model: {model_name}")
 
35
  model = AutoModelForCausalLM.from_pretrained(
36
  model_name,
37
  torch_dtype=torch.float16,
38
  device_map=device,
39
  token=HF_TOKEN, # Replace with actual token
40
  )
 
 
41
  print("Model loaded.")
42
  tokenizer = AutoTokenizer.from_pretrained(model_name)
43
  return model, tokenizer
@@ -186,6 +190,7 @@ class BaseTask(ABC):
186
  :return: Dataset
187
  """
188
  print("Loading dataset from Hugging Face.")
 
189
  dataset= load_dataset(self.dataset_repo, token=HF_TOKEN, split="train")
190
  print("Dataset loaded.")
191
 
@@ -193,6 +198,8 @@ class BaseTask(ABC):
193
  print("Original dataset size: ", len(dataset))
194
  dataset = dataset.shuffle(seed=42).select(range(int(len(dataset) * 0.25)))
195
  print("Reduced dataset size: ", len(dataset))
 
 
196
  return dataset
197
 
198
  @abstractmethod
 
6
  from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor
7
  import torch
8
  from typing import List
9
+ from datetime import datetime
10
  load_dotenv()
11
  HF_TOKEN=os.getenv("HF_TOKEN")
12
  OPENAI_KEY = os.getenv("OPENAI_API_KEY")
 
33
  def load_model(model_name: str, device):
34
  """Loads model and tokenizer once and caches it."""
35
  print(f"Loading model: {model_name}")
36
+ start_time = datetime.now()
37
  model = AutoModelForCausalLM.from_pretrained(
38
  model_name,
39
  torch_dtype=torch.float16,
40
  device_map=device,
41
  token=HF_TOKEN, # Replace with actual token
42
  )
43
+ end_time = datetime.now()
44
+ print(f"Model loaded in {end_time - start_time} seconds.")
45
  print("Model loaded.")
46
  tokenizer = AutoTokenizer.from_pretrained(model_name)
47
  return model, tokenizer
 
190
  :return: Dataset
191
  """
192
  print("Loading dataset from Hugging Face.")
193
+ start_time = datetime.now()
194
  dataset= load_dataset(self.dataset_repo, token=HF_TOKEN, split="train")
195
  print("Dataset loaded.")
196
 
 
198
  print("Original dataset size: ", len(dataset))
199
  dataset = dataset.shuffle(seed=42).select(range(int(len(dataset) * 0.25)))
200
  print("Reduced dataset size: ", len(dataset))
201
+ end_time = datetime.now()
202
+ print(f"Dataset loaded in {end_time - start_time} seconds.")
203
  return dataset
204
 
205
  @abstractmethod
src/deepeval/deepeval_task_manager.py CHANGED
@@ -15,6 +15,7 @@ from src.deepeval.complex_reasoning import ComplexReasoningTask
15
  from src.deepeval.truthfulness_task import TruthfulnessTask
16
  from src.deepeval.nli import NLITask
17
  from typing import List
 
18
  load_dotenv()
19
  HF_TOKEN=os.getenv("HF_TOKEN")
20
 
@@ -59,15 +60,21 @@ class DeepEvalTaskManager:
59
  def run_tasks(self):
60
  """Execute validated tasks in order."""
61
  results = {}
 
62
  for task_name, task_method in self.tasks_to_run.items():
63
  try:
 
64
  print("Running task: ", task_name)
65
  task_enum = getattr(Task, task_name)
66
  task_value = task_enum.value
67
  results[task_value] = task_method() # Call the stored method reference
 
 
68
  except Exception as e:
69
  print(f"Error At Task: {task_name} - {e}")
70
  continue
 
 
71
  print("All tasks completed.")
72
  return results
73
 
 
15
  from src.deepeval.truthfulness_task import TruthfulnessTask
16
  from src.deepeval.nli import NLITask
17
  from typing import List
18
+ from datetime import datetime
19
  load_dotenv()
20
  HF_TOKEN=os.getenv("HF_TOKEN")
21
 
 
60
  def run_tasks(self):
61
  """Execute validated tasks in order."""
62
  results = {}
63
+ total_start_time = datetime.now()
64
  for task_name, task_method in self.tasks_to_run.items():
65
  try:
66
+ start_time = datetime.now()
67
  print("Running task: ", task_name)
68
  task_enum = getattr(Task, task_name)
69
  task_value = task_enum.value
70
  results[task_value] = task_method() # Call the stored method reference
71
+ end_time = datetime.now()
72
+ print(f"Task {task_name} completed in {end_time - start_time} seconds.")
73
  except Exception as e:
74
  print(f"Error At Task: {task_name} - {e}")
75
  continue
76
+ total_end_time = datetime.now()
77
+ print(f"All tasks completed in {total_end_time - total_start_time} seconds.")
78
  print("All tasks completed.")
79
  return results
80