Spaces:
Sleeping
Sleeping
Ahmet Kaan Sever
commited on
Commit
·
66a11b3
1
Parent(s):
dbf76bc
Added time stamps for cost analysis
Browse files
src/deepeval/base_task.py
CHANGED
@@ -6,6 +6,7 @@ import openai
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor
|
7 |
import torch
|
8 |
from typing import List
|
|
|
9 |
load_dotenv()
|
10 |
HF_TOKEN=os.getenv("HF_TOKEN")
|
11 |
OPENAI_KEY = os.getenv("OPENAI_API_KEY")
|
@@ -32,12 +33,15 @@ class BaseTask(ABC):
|
|
32 |
def load_model(model_name: str, device):
|
33 |
"""Loads model and tokenizer once and caches it."""
|
34 |
print(f"Loading model: {model_name}")
|
|
|
35 |
model = AutoModelForCausalLM.from_pretrained(
|
36 |
model_name,
|
37 |
torch_dtype=torch.float16,
|
38 |
device_map=device,
|
39 |
token=HF_TOKEN, # Replace with actual token
|
40 |
)
|
|
|
|
|
41 |
print("Model loaded.")
|
42 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
return model, tokenizer
|
@@ -186,6 +190,7 @@ class BaseTask(ABC):
|
|
186 |
:return: Dataset
|
187 |
"""
|
188 |
print("Loading dataset from Hugging Face.")
|
|
|
189 |
dataset= load_dataset(self.dataset_repo, token=HF_TOKEN, split="train")
|
190 |
print("Dataset loaded.")
|
191 |
|
@@ -193,6 +198,8 @@ class BaseTask(ABC):
|
|
193 |
print("Original dataset size: ", len(dataset))
|
194 |
dataset = dataset.shuffle(seed=42).select(range(int(len(dataset) * 0.25)))
|
195 |
print("Reduced dataset size: ", len(dataset))
|
|
|
|
|
196 |
return dataset
|
197 |
|
198 |
@abstractmethod
|
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor
|
7 |
import torch
|
8 |
from typing import List
|
9 |
+
from datetime import datetime
|
10 |
load_dotenv()
|
11 |
HF_TOKEN=os.getenv("HF_TOKEN")
|
12 |
OPENAI_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
33 |
def load_model(model_name: str, device):
|
34 |
"""Loads model and tokenizer once and caches it."""
|
35 |
print(f"Loading model: {model_name}")
|
36 |
+
start_time = datetime.now()
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
model_name,
|
39 |
torch_dtype=torch.float16,
|
40 |
device_map=device,
|
41 |
token=HF_TOKEN, # Replace with actual token
|
42 |
)
|
43 |
+
end_time = datetime.now()
|
44 |
+
print(f"Model loaded in {end_time - start_time} seconds.")
|
45 |
print("Model loaded.")
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
return model, tokenizer
|
|
|
190 |
:return: Dataset
|
191 |
"""
|
192 |
print("Loading dataset from Hugging Face.")
|
193 |
+
start_time = datetime.now()
|
194 |
dataset= load_dataset(self.dataset_repo, token=HF_TOKEN, split="train")
|
195 |
print("Dataset loaded.")
|
196 |
|
|
|
198 |
print("Original dataset size: ", len(dataset))
|
199 |
dataset = dataset.shuffle(seed=42).select(range(int(len(dataset) * 0.25)))
|
200 |
print("Reduced dataset size: ", len(dataset))
|
201 |
+
end_time = datetime.now()
|
202 |
+
print(f"Dataset loaded in {end_time - start_time} seconds.")
|
203 |
return dataset
|
204 |
|
205 |
@abstractmethod
|
src/deepeval/deepeval_task_manager.py
CHANGED
@@ -15,6 +15,7 @@ from src.deepeval.complex_reasoning import ComplexReasoningTask
|
|
15 |
from src.deepeval.truthfulness_task import TruthfulnessTask
|
16 |
from src.deepeval.nli import NLITask
|
17 |
from typing import List
|
|
|
18 |
load_dotenv()
|
19 |
HF_TOKEN=os.getenv("HF_TOKEN")
|
20 |
|
@@ -59,15 +60,21 @@ class DeepEvalTaskManager:
|
|
59 |
def run_tasks(self):
|
60 |
"""Execute validated tasks in order."""
|
61 |
results = {}
|
|
|
62 |
for task_name, task_method in self.tasks_to_run.items():
|
63 |
try:
|
|
|
64 |
print("Running task: ", task_name)
|
65 |
task_enum = getattr(Task, task_name)
|
66 |
task_value = task_enum.value
|
67 |
results[task_value] = task_method() # Call the stored method reference
|
|
|
|
|
68 |
except Exception as e:
|
69 |
print(f"Error At Task: {task_name} - {e}")
|
70 |
continue
|
|
|
|
|
71 |
print("All tasks completed.")
|
72 |
return results
|
73 |
|
|
|
15 |
from src.deepeval.truthfulness_task import TruthfulnessTask
|
16 |
from src.deepeval.nli import NLITask
|
17 |
from typing import List
|
18 |
+
from datetime import datetime
|
19 |
load_dotenv()
|
20 |
HF_TOKEN=os.getenv("HF_TOKEN")
|
21 |
|
|
|
60 |
def run_tasks(self):
|
61 |
"""Execute validated tasks in order."""
|
62 |
results = {}
|
63 |
+
total_start_time = datetime.now()
|
64 |
for task_name, task_method in self.tasks_to_run.items():
|
65 |
try:
|
66 |
+
start_time = datetime.now()
|
67 |
print("Running task: ", task_name)
|
68 |
task_enum = getattr(Task, task_name)
|
69 |
task_value = task_enum.value
|
70 |
results[task_value] = task_method() # Call the stored method reference
|
71 |
+
end_time = datetime.now()
|
72 |
+
print(f"Task {task_name} completed in {end_time - start_time} seconds.")
|
73 |
except Exception as e:
|
74 |
print(f"Error At Task: {task_name} - {e}")
|
75 |
continue
|
76 |
+
total_end_time = datetime.now()
|
77 |
+
print(f"All tasks completed in {total_end_time - total_start_time} seconds.")
|
78 |
print("All tasks completed.")
|
79 |
return results
|
80 |
|