Spaces:
Paused
Paused
merge
Browse files
auth/authentication.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
from fastapi.security import OAuth2PasswordBearer
|
2 |
-
from fastapi import HTTPException, Depends
|
3 |
-
from jose import JWTError, jwt
|
4 |
-
from datetime import datetime, timedelta
|
5 |
-
|
6 |
-
|
7 |
-
SECRET_KEY = "llmbenchmark_tr" # your secret key
|
8 |
-
ALGORITHM = "HS256"
|
9 |
-
ACCESS_TOKEN_EXPIRE_MINUTES = 30
|
10 |
-
|
11 |
-
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="api/token")
|
12 |
-
|
13 |
-
def create_access_token(data: dict):
|
14 |
-
to_encode = data.copy()
|
15 |
-
expire = datetime.now() + timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
|
16 |
-
to_encode.update({"exp": expire})
|
17 |
-
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
|
18 |
-
return encoded_jwt
|
19 |
-
|
20 |
-
def get_current_user(token: str = Depends(oauth2_scheme)):
|
21 |
-
credentials_exception = HTTPException(
|
22 |
-
status_code=401,
|
23 |
-
detail="Could not validate credentials",
|
24 |
-
headers={"WWW-Authenticate": "Bearer"},
|
25 |
-
)
|
26 |
-
try:
|
27 |
-
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
|
28 |
-
username: str = payload.get("sub")
|
29 |
-
if username is None:
|
30 |
-
raise credentials_exception
|
31 |
-
return username
|
32 |
-
except JWTError:
|
33 |
-
raise credentials_exception
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/deepeval/base_task.py
CHANGED
@@ -3,7 +3,7 @@ import itertools
|
|
3 |
from datasets import load_dataset
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor
|
7 |
import torch
|
8 |
from typing import List
|
9 |
load_dotenv()
|
@@ -29,7 +29,7 @@ class BaseTask(ABC):
|
|
29 |
@staticmethod
|
30 |
def load_model(model_name: str, device):
|
31 |
"""Loads model and tokenizer once and caches it."""
|
32 |
-
if "gemma-3" in model_name:
|
33 |
model = Gemma3ForCausalLM.from_pretrained(
|
34 |
model_name,
|
35 |
#device_map=device, #Gives Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() when moving module from meta to a different device. error
|
|
|
3 |
from datasets import load_dataset
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor#, Gemma3ForCausalLM
|
7 |
import torch
|
8 |
from typing import List
|
9 |
load_dotenv()
|
|
|
29 |
@staticmethod
|
30 |
def load_model(model_name: str, device):
|
31 |
"""Loads model and tokenizer once and caches it."""
|
32 |
+
if False:#"gemma-3" in model_name:
|
33 |
model = Gemma3ForCausalLM.from_pretrained(
|
34 |
model_name,
|
35 |
#device_map=device, #Gives Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() when moving module from meta to a different device. error
|
src/deepeval/commonsense_reasoning_task.py
CHANGED
@@ -2,13 +2,14 @@ from src.deepeval.base_task import BaseTask
|
|
2 |
from src.deepeval.utils import accuracy, accuracy_standard_error
|
3 |
from typing import Any
|
4 |
|
5 |
-
class
|
6 |
def __init__(self, model_name):
|
7 |
super().__init__("metunlp/commonsense", model_name=model_name)
|
8 |
|
9 |
def load_dataset_from_hf(self):
|
|
|
10 |
dataset = super().load_dataset_from_hf()
|
11 |
-
return dataset.select(range(min(
|
12 |
|
13 |
|
14 |
def evaluate(self) -> dict[str, Any]:
|
@@ -16,7 +17,7 @@ class SentimentAnalysisTask(BaseTask):
|
|
16 |
total_count = len(self.dataset)
|
17 |
n_correct = 0
|
18 |
for row in self.dataset:
|
19 |
-
|
20 |
label = row["label"]
|
21 |
choices=[row["choice1"], row["choice2"]]
|
22 |
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)])
|
@@ -28,17 +29,19 @@ class SentimentAnalysisTask(BaseTask):
|
|
28 |
else:
|
29 |
question = "Seçeneklerden hangisi uygun?" # Alternatif
|
30 |
|
31 |
-
prompt = f"
|
32 |
|
33 |
messages = prompt
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
model_answer_cleaned = answer.strip().replace('\n', '').replace(' ', '').upper()
|
40 |
if correct_answer_letter == model_answer_cleaned:
|
41 |
n_correct += 1
|
|
|
|
|
|
|
42 |
|
43 |
acc = accuracy(n_correct, total_count)
|
44 |
acc_stderr = accuracy_standard_error(acc, total_count)
|
|
|
2 |
from src.deepeval.utils import accuracy, accuracy_standard_error
|
3 |
from typing import Any
|
4 |
|
5 |
+
class CommonsenseReasoningTask(BaseTask):
|
6 |
def __init__(self, model_name):
|
7 |
super().__init__("metunlp/commonsense", model_name=model_name)
|
8 |
|
9 |
def load_dataset_from_hf(self):
|
10 |
+
print("Loading the dataset")
|
11 |
dataset = super().load_dataset_from_hf()
|
12 |
+
return dataset.select(range(min(1, len(dataset))))
|
13 |
|
14 |
|
15 |
def evaluate(self) -> dict[str, Any]:
|
|
|
17 |
total_count = len(self.dataset)
|
18 |
n_correct = 0
|
19 |
for row in self.dataset:
|
20 |
+
print(row)
|
21 |
label = row["label"]
|
22 |
choices=[row["choice1"], row["choice2"]]
|
23 |
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)])
|
|
|
29 |
else:
|
30 |
question = "Seçeneklerden hangisi uygun?" # Alternatif
|
31 |
|
32 |
+
prompt = f"Bağlam:\n{row["text"]}\nÖnerme:\n{row["context"]}\nSoru:{question}\nSeçenekler:\n{formatted_choices}"
|
33 |
|
34 |
messages = prompt
|
35 |
+
|
36 |
+
model_answer = self.generate_response_mcqa_multi_token(messages, choices=choices)
|
37 |
+
|
38 |
+
correct_answer_letter = "A" if row["answer"] == 1 else "B" if row["answer"] == 2 else None
|
39 |
+
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper()
|
|
|
40 |
if correct_answer_letter == model_answer_cleaned:
|
41 |
n_correct += 1
|
42 |
+
print(f"Correct Answer: {correct_answer_letter}")
|
43 |
+
print(f"Model Answer: {model_answer}")
|
44 |
+
print(f"Model Answer Cleaned: {model_answer_cleaned}")
|
45 |
|
46 |
acc = accuracy(n_correct, total_count)
|
47 |
acc_stderr = accuracy_standard_error(acc, total_count)
|
src/deepeval/deepeval_task_manager.py
CHANGED
@@ -3,6 +3,7 @@ from dotenv import load_dotenv
|
|
3 |
from enum import Enum
|
4 |
from src.deepeval.turkish_general_knowledge_task import TurkishGeneralKnowledgeTask
|
5 |
from src.deepeval.sentiment_analysis_task import SentimentAnalysisTask
|
|
|
6 |
from typing import List
|
7 |
load_dotenv()
|
8 |
|
@@ -12,6 +13,7 @@ class Task(Enum):
|
|
12 |
# SUMMARIZATION = "summarization"
|
13 |
SENTIMENT_ANALYSIS = "sentiment_analysis_tr"
|
14 |
TURKISH_GENERAL_KNOWLEDGE = "turkish_general_knowledge"
|
|
|
15 |
|
16 |
|
17 |
class DeepEvalTaskManager:
|
@@ -51,8 +53,13 @@ class DeepEvalTaskManager:
|
|
51 |
res = turkish_general_knowledge_task.evaluate()
|
52 |
return res
|
53 |
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
if __name__ == "__main__":
|
56 |
-
des = DeepEvalTaskManager("google/gemma-
|
57 |
res = des.run_tasks()
|
58 |
print(res)
|
|
|
3 |
from enum import Enum
|
4 |
from src.deepeval.turkish_general_knowledge_task import TurkishGeneralKnowledgeTask
|
5 |
from src.deepeval.sentiment_analysis_task import SentimentAnalysisTask
|
6 |
+
from src.deepeval.commonsense_reasoning_task import CommonsenseReasoningTask
|
7 |
from typing import List
|
8 |
load_dotenv()
|
9 |
|
|
|
13 |
# SUMMARIZATION = "summarization"
|
14 |
SENTIMENT_ANALYSIS = "sentiment_analysis_tr"
|
15 |
TURKISH_GENERAL_KNOWLEDGE = "turkish_general_knowledge"
|
16 |
+
COMMONSENSE_REASONING = "commonsense_reasoning"
|
17 |
|
18 |
|
19 |
class DeepEvalTaskManager:
|
|
|
53 |
res = turkish_general_knowledge_task.evaluate()
|
54 |
return res
|
55 |
|
56 |
+
def commonsense_reasoning(self):
|
57 |
+
commonsense_reasoning_task = CommonsenseReasoningTask(self.model_name)
|
58 |
+
res = commonsense_reasoning_task.evaluate()
|
59 |
+
return res
|
60 |
+
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
+
des = DeepEvalTaskManager("google/gemma-2-2b-it", ["TURKISH_GENERAL_KNOWLEDGE","COMMONSENSE_REASONING"])
|
64 |
res = des.run_tasks()
|
65 |
print(res)
|
src/deepeval/sentiment_analysis_task.py
CHANGED
@@ -7,6 +7,7 @@ class SentimentAnalysisTask(BaseTask):
|
|
7 |
super().__init__("metunlp/sentiment_analysis_tr", model_name=model_name)
|
8 |
|
9 |
def load_dataset_from_hf(self):
|
|
|
10 |
dataset = super().load_dataset_from_hf()
|
11 |
return dataset.select(range(min(10, len(dataset))))
|
12 |
|
|
|
7 |
super().__init__("metunlp/sentiment_analysis_tr", model_name=model_name)
|
8 |
|
9 |
def load_dataset_from_hf(self):
|
10 |
+
print("Loading the dataset")
|
11 |
dataset = super().load_dataset_from_hf()
|
12 |
return dataset.select(range(min(10, len(dataset))))
|
13 |
|
src/deepeval/turkish_general_knowledge_task.py
CHANGED
@@ -8,7 +8,7 @@ class TurkishGeneralKnowledgeTask(BaseTask):
|
|
8 |
|
9 |
def load_dataset_from_hf(self):
|
10 |
dataset = super().load_dataset_from_hf()
|
11 |
-
return dataset.select(range(min(
|
12 |
|
13 |
def evaluate(self):
|
14 |
responses = []
|
|
|
8 |
|
9 |
def load_dataset_from_hf(self):
|
10 |
dataset = super().load_dataset_from_hf()
|
11 |
+
return dataset.select(range(min(1, len(dataset))))
|
12 |
|
13 |
def evaluate(self):
|
14 |
responses = []
|