Spaces:
Running
on
L4
Running
on
L4
updated
Browse files- src/deepeval/bias.py +0 -106
- src/deepeval/bias_task.py +2 -2
src/deepeval/bias.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
from src.deepeval.base_task import BaseTask
|
2 |
-
from collections import defaultdict
|
3 |
-
from src.deepeval.utils import accuracy, accuracy_standard_error
|
4 |
-
from typing import Any
|
5 |
-
import ast
|
6 |
-
|
7 |
-
|
8 |
-
class BiasTask(BaseTask):
|
9 |
-
def __init__(self, model_name):
|
10 |
-
super().__init__("metunlp/sosyoloji_bias", model_name=model_name)
|
11 |
-
|
12 |
-
<<<<<<< HEAD
|
13 |
-
def load_dataset_from_hf(self):
|
14 |
-
dataset = super().load_dataset_from_hf()
|
15 |
-
return dataset
|
16 |
-
=======
|
17 |
-
def load_dataset_lmjudge_from_hf(self):
|
18 |
-
dataset = super().load_dataset_lmjudge_from_hf()
|
19 |
-
return dataset.select(range(min(1, len(dataset))))
|
20 |
-
>>>>>>> 2dca79c (customize the data count)
|
21 |
-
|
22 |
-
|
23 |
-
def evaluate(self) -> dict[str, Any]:
|
24 |
-
responses = []
|
25 |
-
difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0})
|
26 |
-
total_count = 0
|
27 |
-
true = 0
|
28 |
-
|
29 |
-
for row in self.dataset:
|
30 |
-
total_count += 2
|
31 |
-
|
32 |
-
# Get values from row
|
33 |
-
|
34 |
-
## common
|
35 |
-
choices = ast.literal_eval(row["choices"]) # Convert string to list
|
36 |
-
formatted_choices = "\n".join([f"{chr(65 + i)}: {choice}" for i, choice in enumerate(choices)])
|
37 |
-
|
38 |
-
## ambiguous context
|
39 |
-
ambiguous_context = row["ambiguous_context"]
|
40 |
-
ambiguous_question = row["question_ambiguous"]
|
41 |
-
ambiguous_answer = row["answer_ambiguous"]
|
42 |
-
ambiguous_correct_answer_letter = chr(64 + ambiguous_answer) # 65 - 1 since we need the indexing to start from 0
|
43 |
-
ambiguous_prompt = f"Bağlam: {ambiguous_context}\nSoru: {ambiguous_question}\nSeçenekler:{formatted_choices}"
|
44 |
-
|
45 |
-
## disambiguated context
|
46 |
-
disambiguated_context = row["disambiguated_context"]
|
47 |
-
disambiguated_question = row["question_disambiguated"]
|
48 |
-
disambiguated_answer = row["answer_disambiguated"]
|
49 |
-
disambiguated_correct_answer_letter = chr(64 + disambiguated_answer) # 65 - 1 since we need the indexing to start from 0
|
50 |
-
disambiguated_prompt = f"Bağlam: {disambiguated_context}\nSoru: {disambiguated_question}\nSeçenekler:{formatted_choices}"
|
51 |
-
|
52 |
-
# Prints for debugging
|
53 |
-
print(f"Choices: {choices}")
|
54 |
-
print("Type of choices:", type(choices))
|
55 |
-
|
56 |
-
# STAGE 1
|
57 |
-
instruction = ""
|
58 |
-
prompt = f"Stage1:\n{ambiguous_prompt}\n{instruction}\n"
|
59 |
-
message = prompt
|
60 |
-
ambiguous_model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2)
|
61 |
-
ambiguous_model_answer_cleaned = ambiguous_model_answer.strip().replace('\n', '').replace(' ', '').upper().replace(':','')
|
62 |
-
## Print answers
|
63 |
-
print(f"Correct Answer: {ambiguous_correct_answer_letter}")
|
64 |
-
print(f"Model Answer: {ambiguous_model_answer}")
|
65 |
-
print(f"Model Answer Cleaned: {ambiguous_model_answer_cleaned}")
|
66 |
-
print(f"Result: {ambiguous_correct_answer_letter == ambiguous_model_answer_cleaned}")
|
67 |
-
## Check if correct based on metric
|
68 |
-
if ambiguous_correct_answer_letter == ambiguous_model_answer_cleaned:
|
69 |
-
true += 1
|
70 |
-
difficulty_results["ambiguous"]['correct'] += 1
|
71 |
-
|
72 |
-
difficulty_results["ambiguous"]['total'] += 1
|
73 |
-
|
74 |
-
# STAGE 2
|
75 |
-
instruction = ""
|
76 |
-
prompt = f"Stage2:\n{disambiguated_prompt}\n{instruction}\n"
|
77 |
-
message = prompt
|
78 |
-
disambiguated_model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2)
|
79 |
-
disambiguated_model_answer_cleaned = disambiguated_model_answer.strip().replace('\n', '').replace(' ','').upper().replace(':', '')
|
80 |
-
## Print answers
|
81 |
-
print(f"Correct Answer: {disambiguated_correct_answer_letter}")
|
82 |
-
print(f"Model Answer: {disambiguated_model_answer}")
|
83 |
-
print(f"Model Answer Cleaned: {disambiguated_model_answer_cleaned}")
|
84 |
-
print(f"Result: {disambiguated_correct_answer_letter == disambiguated_model_answer_cleaned}")
|
85 |
-
responses.append((ambiguous_model_answer_cleaned,disambiguated_model_answer_cleaned))
|
86 |
-
|
87 |
-
## Check if correct based on metric
|
88 |
-
if disambiguated_correct_answer_letter == disambiguated_model_answer_cleaned:
|
89 |
-
true += 1
|
90 |
-
difficulty_results["disambiguated"]['correct'] += 1
|
91 |
-
|
92 |
-
difficulty_results["disambiguated"]['total'] += 1
|
93 |
-
|
94 |
-
# Print results categorized by difficulty
|
95 |
-
for category, stats in difficulty_results.items():
|
96 |
-
correct = stats['correct']
|
97 |
-
total = stats['total']
|
98 |
-
calculatedAccuracy = correct / total if total > 0 else 0
|
99 |
-
print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({correct}/{total})")
|
100 |
-
|
101 |
-
print("Results:", responses)
|
102 |
-
print("Overall Accuracy:", true / total_count)
|
103 |
-
acc = accuracy(true, total_count)
|
104 |
-
acc_stderr = accuracy_standard_error(acc, total_count)
|
105 |
-
return {"acc": acc, "acc_stderr": acc_stderr}
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/deepeval/bias_task.py
CHANGED
@@ -9,8 +9,8 @@ class BiasTask(BaseTask):
|
|
9 |
def __init__(self, model_name: str):
|
10 |
super().__init__("metunlp/sosyoloji_bias", model_name=model_name)
|
11 |
|
12 |
-
def
|
13 |
-
dataset = super().
|
14 |
return dataset
|
15 |
|
16 |
def evaluate(self) -> dict[str, Any]:
|
|
|
9 |
def __init__(self, model_name: str):
|
10 |
super().__init__("metunlp/sosyoloji_bias", model_name=model_name)
|
11 |
|
12 |
+
def load_dataset_lmjudge_from_hf(self):
|
13 |
+
dataset = super().load_dataset_lmjudge_from_hf()
|
14 |
return dataset
|
15 |
|
16 |
def evaluate(self) -> dict[str, Any]:
|