Spaces:
Sleeping
Sleeping
Ahmet Kaan Sever
commited on
Commit
·
9e6ede8
1
Parent(s):
76d5f6d
Fixed TRGenKnowledge task and mcqa generation function
Browse filesgenerate_response_mcqa_multi_token works correctly for all kinds of choices.
Model generates letters.
Also added support for gemini models.
requirements.txt
CHANGED
@@ -2,6 +2,7 @@ fastapi
|
|
2 |
uvicorn[standard]
|
3 |
# lm_eval==0.4.3
|
4 |
git+https://github.com/ecemumutlu/lm-evaluation-harness.git
|
|
|
5 |
python-jose
|
6 |
python-multipart
|
7 |
deepeval
|
|
|
2 |
uvicorn[standard]
|
3 |
# lm_eval==0.4.3
|
4 |
git+https://github.com/ecemumutlu/lm-evaluation-harness.git
|
5 |
+
git+https://github.com/huggingface/[email protected]
|
6 |
python-jose
|
7 |
python-multipart
|
8 |
deepeval
|
src/deepeval/base_task.py
CHANGED
@@ -3,7 +3,7 @@ import itertools
|
|
3 |
from datasets import load_dataset
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList
|
7 |
import torch
|
8 |
from typing import List
|
9 |
load_dotenv()
|
@@ -29,12 +29,20 @@ class BaseTask(ABC):
|
|
29 |
@staticmethod
|
30 |
def load_model(model_name: str, device):
|
31 |
"""Loads model and tokenizer once and caches it."""
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
return model, tokenizer
|
40 |
|
@@ -77,48 +85,66 @@ class BaseTask(ABC):
|
|
77 |
"""
|
78 |
Handles multiple-choice questions where answers might have multiple tokens.
|
79 |
"""
|
80 |
-
# Ensure
|
81 |
if self.tokenizer.pad_token is None:
|
82 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
input_ids = inputs.input_ids.to(self.model.device)
|
86 |
attention_mask = inputs.attention_mask.to(self.model.device)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
print("Valid token IDs:", valid_token_ids)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
|
|
|
|
99 |
def __call__(self, input_ids, scores):
|
100 |
-
mask = torch.full_like(scores, float("-inf")) #
|
101 |
-
|
102 |
-
# Allow the tokens in choices
|
103 |
-
allowed_tokens = {token for tokens in self.valid_token_ids for token in tokens}
|
104 |
-
mask[:, list(allowed_tokens)] = scores[:, list(allowed_tokens)] # Allow only these tokens
|
105 |
-
|
106 |
return mask
|
107 |
-
|
108 |
-
logits_processor = LogitsProcessorList([MultipleChoiceLogitsProcessor(valid_token_ids)])
|
109 |
|
|
|
110 |
output = self.model.generate(
|
111 |
input_ids,
|
|
|
112 |
attention_mask=attention_mask,
|
113 |
max_new_tokens=max_new_tokens,
|
114 |
-
|
|
|
|
|
|
|
115 |
)
|
116 |
-
|
117 |
-
|
118 |
-
generated_text = self.tokenizer.decode(
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
@abstractmethod
|
124 |
def load_dataset_from_hf(self):
|
|
|
3 |
from datasets import load_dataset
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor, Gemma3ForCausalLM
|
7 |
import torch
|
8 |
from typing import List
|
9 |
load_dotenv()
|
|
|
29 |
@staticmethod
|
30 |
def load_model(model_name: str, device):
|
31 |
"""Loads model and tokenizer once and caches it."""
|
32 |
+
if "gemma" in model_name:
|
33 |
+
model = Gemma3ForCausalLM.from_pretrained(
|
34 |
+
model_name,
|
35 |
+
#device_map=device, #Gives Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() when moving module from meta to a different device. error
|
36 |
+
#torch_dtype=torch.float16, ##Gives Assertion `probability tensor contains either `inf`, `nan` or element < 0` failed error.
|
37 |
+
token=HF_TOKEN, # Replace with actual token
|
38 |
+
).to(device)
|
39 |
+
else:
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
model_name,
|
42 |
+
torch_dtype=torch.float16,
|
43 |
+
device_map=device,
|
44 |
+
token=HF_TOKEN, # Replace with actual token
|
45 |
+
)
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
return model, tokenizer
|
48 |
|
|
|
85 |
"""
|
86 |
Handles multiple-choice questions where answers might have multiple tokens.
|
87 |
"""
|
88 |
+
# Ensure tokenizer has proper special tokens set
|
89 |
if self.tokenizer.pad_token is None:
|
90 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
91 |
|
92 |
+
if self.model.config.pad_token_id is None:
|
93 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
94 |
+
|
95 |
+
chat = [
|
96 |
+
{"role": "user", "content": "You are a multiple choice question-answering chatbot. Do not give an answer that is not included in the choices. Only answer with letters like A, B, C, D..."},
|
97 |
+
{"role": "assistant", "content": "I am ready to answer your questions. Feel free to ask anything.\n"},
|
98 |
+
{"role": "user", "content": f"{msg}"},
|
99 |
+
]
|
100 |
+
formatted_chat = self.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
101 |
+
print(formatted_chat)
|
102 |
+
inputs = self.tokenizer(formatted_chat, return_tensors="pt", padding=True, truncation=True)
|
103 |
input_ids = inputs.input_ids.to(self.model.device)
|
104 |
attention_mask = inputs.attention_mask.to(self.model.device)
|
105 |
|
106 |
+
# Generate the sequence of letters starting from 'A'
|
107 |
+
letters = [chr(ord('A') + i) for i in range(len(choices))] # Create option letters A, B, C, D, E, ...
|
108 |
+
encoded_choices = [self.tokenizer.encode(letter, add_special_tokens=False) for letter in letters]
|
109 |
+
flattened_encoded_choices = [item for sublist in encoded_choices for item in sublist] # Flatten the list
|
110 |
+
print(flattened_encoded_choices)
|
|
|
111 |
|
112 |
+
allowed_tokens = flattened_encoded_choices
|
113 |
+
allowed_tokens += self.get_chat_template_tokens() # Get the special chat tokens
|
114 |
+
allowed_token_ids = set(allowed_tokens) # Ensure uniqueness
|
115 |
|
116 |
+
# Custom LogitsProcessor to restrict generation
|
117 |
+
class RestrictToABCDLogitsProcessor(LogitsProcessor):
|
118 |
def __call__(self, input_ids, scores):
|
119 |
+
mask = torch.full_like(scores, float("-inf")) # Block all tokens
|
120 |
+
mask[:, list(allowed_token_ids)] = scores[:, list(allowed_token_ids)] # Allow only A, B, C, D tokens
|
|
|
|
|
|
|
|
|
121 |
return mask
|
122 |
+
logits_processor = LogitsProcessorList([RestrictToABCDLogitsProcessor()])
|
|
|
123 |
|
124 |
+
# Generate response
|
125 |
output = self.model.generate(
|
126 |
input_ids,
|
127 |
+
do_sample=True,
|
128 |
attention_mask=attention_mask,
|
129 |
max_new_tokens=max_new_tokens,
|
130 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
131 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
132 |
+
temperature=0.4,
|
133 |
+
logits_processor=logits_processor,
|
134 |
)
|
135 |
+
generated_ids = output[0] # The generated sequence including the prompt
|
136 |
+
generated_tokens = generated_ids[len(input_ids[0]):] # Exclude the input_ids part
|
137 |
+
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
138 |
+
return generated_text
|
139 |
+
|
140 |
+
def get_chat_template_tokens(self):
|
141 |
+
allowed_token_chat = [
|
142 |
+
{"role": "user", "content": ""},
|
143 |
+
{"role": "assistant", "content": ""}
|
144 |
+
]
|
145 |
+
allowed_special_tokens = self.tokenizer.apply_chat_template(allowed_token_chat, tokenize=True)
|
146 |
+
return allowed_special_tokens
|
147 |
+
|
148 |
|
149 |
@abstractmethod
|
150 |
def load_dataset_from_hf(self):
|
src/deepeval/deepeval_task_manager.py
CHANGED
@@ -53,6 +53,6 @@ class DeepEvalTaskManager:
|
|
53 |
|
54 |
|
55 |
if __name__ == "__main__":
|
56 |
-
des = DeepEvalTaskManager("
|
57 |
res = des.run_tasks()
|
58 |
print(res)
|
|
|
53 |
|
54 |
|
55 |
if __name__ == "__main__":
|
56 |
+
des = DeepEvalTaskManager("google/gemma-3-4b-it", ["TURKISH_GENERAL_KNOWLEDGE"])
|
57 |
res = des.run_tasks()
|
58 |
print(res)
|
src/deepeval/sentiment_analysis_task.py
CHANGED
@@ -7,7 +7,8 @@ class SentimentAnalysisTask(BaseTask):
|
|
7 |
super().__init__("metunlp/sentiment_analysis_tr", model_name=model_name)
|
8 |
|
9 |
def load_dataset_from_hf(self):
|
10 |
-
|
|
|
11 |
|
12 |
|
13 |
def evaluate(self) -> dict[str, Any]:
|
@@ -16,11 +17,16 @@ class SentimentAnalysisTask(BaseTask):
|
|
16 |
n_correct = 0
|
17 |
for row in self.dataset:
|
18 |
sentence = row["sentence"]
|
19 |
-
|
|
|
|
|
20 |
messages = prompt
|
21 |
-
answer = self.
|
|
|
22 |
responses.append(answer)
|
23 |
-
if row["sentiment"] ==
|
|
|
|
|
24 |
n_correct += 1
|
25 |
|
26 |
acc = accuracy(n_correct, total_count)
|
|
|
7 |
super().__init__("metunlp/sentiment_analysis_tr", model_name=model_name)
|
8 |
|
9 |
def load_dataset_from_hf(self):
|
10 |
+
dataset = super().load_dataset_from_hf()
|
11 |
+
return dataset.select(range(min(10, len(dataset))))
|
12 |
|
13 |
|
14 |
def evaluate(self) -> dict[str, Any]:
|
|
|
17 |
n_correct = 0
|
18 |
for row in self.dataset:
|
19 |
sentence = row["sentence"]
|
20 |
+
choices=["positive", "negative", "neutral"]
|
21 |
+
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)])
|
22 |
+
prompt = f"Verilen metin hangi duyguyu ifade ediyor? {sentence}\n {formatted_choices}"
|
23 |
messages = prompt
|
24 |
+
answer = self.generate_response_mcqa_multi_token(messages, choices=choices)
|
25 |
+
print("Answer:", answer)
|
26 |
responses.append(answer)
|
27 |
+
correct_answer_letter = "A" if row["sentiment"] == "positive" else "B" if row["sentiment"] == "negative" else "C" if row["sentiment"] == "neutral" else None
|
28 |
+
model_answer_cleaned = answer.strip().replace('\n', '').replace(' ', '').upper()
|
29 |
+
if correct_answer_letter == model_answer_cleaned:
|
30 |
n_correct += 1
|
31 |
|
32 |
acc = accuracy(n_correct, total_count)
|
src/deepeval/turkish_general_knowledge_task.py
CHANGED
@@ -34,16 +34,26 @@ class TurkishGeneralKnowledgeTask(BaseTask):
|
|
34 |
category = 'hard'
|
35 |
|
36 |
# Create a multiple-choice prompt to encourage index output
|
37 |
-
formatted_choices = "\n".join([f"{i}: {choice}" for i, choice in enumerate(choices)])
|
38 |
-
prompt = f"Soru: {question}\nSeçenekler:\n{formatted_choices}\nSorunun doğru cevabı hangisidir?"
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
responses.append(model_answer)
|
43 |
print(f"Correct Answer: {choices[answer_index]}")
|
44 |
print(f"Model Answer: {model_answer}")
|
|
|
|
|
|
|
|
|
45 |
# Check if the answer is correct
|
46 |
-
|
|
|
|
|
|
|
47 |
true += 1
|
48 |
difficulty_results[category]['correct'] += 1
|
49 |
|
|
|
34 |
category = 'hard'
|
35 |
|
36 |
# Create a multiple-choice prompt to encourage index output
|
37 |
+
formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)])
|
|
|
38 |
|
39 |
+
instruction = ""
|
40 |
+
message = f"{question}\nChoices:\n{formatted_choices}\n{instruction}\n"
|
41 |
+
|
42 |
+
#"""Wrap the result between final_answer tags. For example: <final_answer/> letter <final_answer>.
|
43 |
+
#"""
|
44 |
+
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=30)
|
45 |
responses.append(model_answer)
|
46 |
print(f"Correct Answer: {choices[answer_index]}")
|
47 |
print(f"Model Answer: {model_answer}")
|
48 |
+
|
49 |
+
#TODO: Make the cleaning in the mcqa function
|
50 |
+
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper()
|
51 |
+
|
52 |
# Check if the answer is correct
|
53 |
+
correct_answer_letter = chr(65 + answer_index)
|
54 |
+
print("Correct Answer Letter:", correct_answer_letter)
|
55 |
+
|
56 |
+
if correct_answer_letter == model_answer_cleaned:
|
57 |
true += 1
|
58 |
difficulty_results[category]['correct'] += 1
|
59 |
|