Spaces:
Sleeping
Sleeping
Merge branch 'main' into aysu
Browse files- src/deepeval/base_task.py +175 -170
- src/deepeval/turkish_general_knowledge_task.py +1 -1
- svc/router.py +8 -1
src/deepeval/base_task.py
CHANGED
@@ -1,171 +1,176 @@
|
|
1 |
-
from abc import ABC, abstractmethod
|
2 |
-
from datasets import load_dataset
|
3 |
-
import os
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor
|
6 |
-
import torch
|
7 |
-
from typing import List
|
8 |
-
load_dotenv()
|
9 |
-
HF_TOKEN=os.getenv("HF_TOKEN")
|
10 |
-
|
11 |
-
class BaseTask(ABC):
|
12 |
-
_model_cache = {} # Class-level cache for models and tokenizers
|
13 |
-
|
14 |
-
def __init__(self, dataset_repo, model_name):
|
15 |
-
self.dataset_repo = dataset_repo
|
16 |
-
self.dataset = self.load_dataset_from_hf()
|
17 |
-
self.device = "cuda
|
18 |
-
self.model, self.tokenizer = self.get_cached_model(model_name, self.device)
|
19 |
-
|
20 |
-
|
21 |
-
@classmethod
|
22 |
-
def get_cached_model(cls, model_name, device):
|
23 |
-
"""Ensures the same model and tokenizer are used for every instance of subclasses."""
|
24 |
-
if model_name not in cls._model_cache:
|
25 |
-
cls._model_cache[model_name] = cls.load_model(model_name, device)
|
26 |
-
return cls._model_cache[model_name]
|
27 |
-
|
28 |
-
@staticmethod
|
29 |
-
def load_model(model_name: str, device):
|
30 |
-
"""Loads model and tokenizer once and caches it."""
|
31 |
-
model
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
"""
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
{"role": "user", "content":
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
return
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
171 |
pass
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from datasets import load_dataset
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor
|
6 |
+
import torch
|
7 |
+
from typing import List
|
8 |
+
load_dotenv()
|
9 |
+
HF_TOKEN=os.getenv("HF_TOKEN")
|
10 |
+
|
11 |
+
class BaseTask(ABC):
|
12 |
+
_model_cache = {} # Class-level cache for models and tokenizers
|
13 |
+
|
14 |
+
def __init__(self, dataset_repo, model_name):
|
15 |
+
self.dataset_repo = dataset_repo
|
16 |
+
self.dataset = self.load_dataset_from_hf()
|
17 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
self.model, self.tokenizer = self.get_cached_model(model_name, self.device)
|
19 |
+
|
20 |
+
|
21 |
+
@classmethod
|
22 |
+
def get_cached_model(cls, model_name, device):
|
23 |
+
"""Ensures the same model and tokenizer are used for every instance of subclasses."""
|
24 |
+
if model_name not in cls._model_cache:
|
25 |
+
cls._model_cache[model_name] = cls.load_model(model_name, device)
|
26 |
+
return cls._model_cache[model_name]
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def load_model(model_name: str, device):
|
30 |
+
"""Loads model and tokenizer once and caches it."""
|
31 |
+
print(f"Loading model: {model_name}")
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
model_name,
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
device_map=device,
|
36 |
+
token=HF_TOKEN, # Replace with actual token
|
37 |
+
)
|
38 |
+
print("Model loaded.")
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
40 |
+
return model, tokenizer
|
41 |
+
|
42 |
+
|
43 |
+
def generate_response_mcqa(self, msg, max_new_tokens=1, choices: List[str]=[]):
|
44 |
+
# Ensure the tokenizer has a padding token
|
45 |
+
if self.tokenizer.pad_token is None:
|
46 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token # Use EOS token as PAD token
|
47 |
+
|
48 |
+
inputs = self.tokenizer(msg, return_tensors="pt", padding=True, truncation=True)
|
49 |
+
input_ids = inputs.input_ids.to(self.model.device)
|
50 |
+
attention_mask = inputs.attention_mask.to(self.model.device)
|
51 |
+
|
52 |
+
if self.model.config.pad_token_id is None:
|
53 |
+
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
54 |
+
|
55 |
+
# Get token IDs for answer choices
|
56 |
+
valid_answers = choices
|
57 |
+
valid_token_ids = [self.tokenizer.convert_tokens_to_ids(ans) for ans in valid_answers]
|
58 |
+
|
59 |
+
class MultipleChoiceLogitsProcessor:
|
60 |
+
def __call__(self, input_ids, scores):
|
61 |
+
mask = torch.full_like(scores, float("-inf"))
|
62 |
+
mask[:, valid_token_ids] = scores[:, valid_token_ids] # Allow only valid tokens
|
63 |
+
return mask
|
64 |
+
|
65 |
+
logits_processor = LogitsProcessorList([MultipleChoiceLogitsProcessor()])
|
66 |
+
|
67 |
+
output = self.model.generate(
|
68 |
+
input_ids,
|
69 |
+
attention_mask=attention_mask, # Fix: Pass attention_mask to avoid warning
|
70 |
+
max_new_tokens=max_new_tokens,
|
71 |
+
logits_processor=logits_processor
|
72 |
+
)
|
73 |
+
answer = self.tokenizer.decode(output[0][-1])
|
74 |
+
|
75 |
+
return answer
|
76 |
+
|
77 |
+
def generate_response_mcqa_multi_token(self, msg, max_new_tokens=5, choices: list = []):
|
78 |
+
"""
|
79 |
+
Handles multiple-choice questions where answers might have multiple tokens.
|
80 |
+
"""
|
81 |
+
# Ensure tokenizer has proper special tokens set
|
82 |
+
if self.tokenizer.pad_token is None:
|
83 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
84 |
+
|
85 |
+
if self.model.config.pad_token_id is None:
|
86 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
87 |
+
|
88 |
+
chat = [
|
89 |
+
{"role": "user", "content": "You are a multiple choice question-answering chatbot. Do not give an answer that is not included in the choices. Only answer with letters like A, B, C, D..."},
|
90 |
+
{"role": "assistant", "content": "I am ready to answer your questions. Feel free to ask anything.\n"},
|
91 |
+
{"role": "user", "content": f"{msg}"},
|
92 |
+
]
|
93 |
+
formatted_chat = self.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
94 |
+
print(formatted_chat)
|
95 |
+
inputs = self.tokenizer(formatted_chat, return_tensors="pt", padding=True, truncation=True)
|
96 |
+
input_ids = inputs.input_ids.to(self.model.device)
|
97 |
+
attention_mask = inputs.attention_mask.to(self.model.device)
|
98 |
+
|
99 |
+
# Generate the sequence of letters starting from 'A'
|
100 |
+
letters = [chr(ord('A') + i) for i in range(len(choices))] # Create option letters A, B, C, D, E, ...
|
101 |
+
encoded_choices = [self.tokenizer.encode(letter, add_special_tokens=False) for letter in letters]
|
102 |
+
flattened_encoded_choices = [item for sublist in encoded_choices for item in sublist] # Flatten the list
|
103 |
+
print(flattened_encoded_choices)
|
104 |
+
|
105 |
+
allowed_tokens = flattened_encoded_choices
|
106 |
+
allowed_tokens += self.get_chat_template_tokens() # Get the special chat tokens
|
107 |
+
allowed_token_ids = set(allowed_tokens) # Ensure uniqueness
|
108 |
+
|
109 |
+
# Custom LogitsProcessor to restrict generation
|
110 |
+
class RestrictToABCDLogitsProcessor(LogitsProcessor):
|
111 |
+
def __call__(self, input_ids, scores):
|
112 |
+
mask = torch.full_like(scores, float("-inf")) # Block all tokens
|
113 |
+
mask[:, list(allowed_token_ids)] = scores[:, list(allowed_token_ids)] # Allow only A, B, C, D tokens
|
114 |
+
return mask
|
115 |
+
logits_processor = LogitsProcessorList([RestrictToABCDLogitsProcessor()])
|
116 |
+
|
117 |
+
# Generate response
|
118 |
+
output = self.model.generate(
|
119 |
+
input_ids,
|
120 |
+
do_sample=True,
|
121 |
+
attention_mask=attention_mask,
|
122 |
+
max_new_tokens=max_new_tokens,
|
123 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
124 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
125 |
+
temperature=0.4,
|
126 |
+
logits_processor=logits_processor,
|
127 |
+
)
|
128 |
+
generated_ids = output[0] # The generated sequence including the prompt
|
129 |
+
generated_tokens = generated_ids[len(input_ids[0]):] # Exclude the input_ids part
|
130 |
+
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
131 |
+
return generated_text
|
132 |
+
|
133 |
+
def generate_response(self, prompt: str, max_new_tokens: int = 100) -> str:
|
134 |
+
|
135 |
+
if self.tokenizer.pad_token is None:
|
136 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
137 |
+
|
138 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
139 |
+
input_ids = inputs.input_ids.to(self.model.device)
|
140 |
+
attention_mask = inputs.attention_mask.to(self.model.device)
|
141 |
+
|
142 |
+
if self.model.config.pad_token_id is None:
|
143 |
+
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
144 |
+
|
145 |
+
output = self.model.generate(
|
146 |
+
input_ids,
|
147 |
+
attention_mask=attention_mask,
|
148 |
+
max_new_tokens=max_new_tokens,
|
149 |
+
do_sample=True,
|
150 |
+
temperature=0.7,
|
151 |
+
)
|
152 |
+
result = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
153 |
+
return result
|
154 |
+
|
155 |
+
def get_chat_template_tokens(self):
|
156 |
+
allowed_token_chat = [
|
157 |
+
{"role": "user", "content": ""},
|
158 |
+
{"role": "assistant", "content": ""}
|
159 |
+
]
|
160 |
+
allowed_special_tokens = self.tokenizer.apply_chat_template(allowed_token_chat, tokenize=True)
|
161 |
+
return allowed_special_tokens
|
162 |
+
|
163 |
+
@abstractmethod
|
164 |
+
def load_dataset_from_hf(self):
|
165 |
+
"""
|
166 |
+
Define your own loading method if needed.
|
167 |
+
:return: Dataset
|
168 |
+
"""
|
169 |
+
print("Loading dataset from Hugging Face.")
|
170 |
+
dataset= load_dataset(self.dataset_repo, token=HF_TOKEN, split="train")
|
171 |
+
print("Dataset loaded.")
|
172 |
+
return dataset
|
173 |
+
|
174 |
+
@abstractmethod
|
175 |
+
def evaluate(self):
|
176 |
pass
|
src/deepeval/turkish_general_knowledge_task.py
CHANGED
@@ -42,7 +42,7 @@ class TurkishGeneralKnowledgeTask(BaseTask):
|
|
42 |
|
43 |
#"""Wrap the result between final_answer tags. For example: <final_answer/> letter <final_answer>.
|
44 |
#"""
|
45 |
-
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=
|
46 |
responses.append(model_answer)
|
47 |
print(f"Correct Answer: {choices[answer_index]}")
|
48 |
print(f"Model Answer: {model_answer}")
|
|
|
42 |
|
43 |
#"""Wrap the result between final_answer tags. For example: <final_answer/> letter <final_answer>.
|
44 |
#"""
|
45 |
+
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2)
|
46 |
responses.append(model_answer)
|
47 |
print(f"Correct Answer: {choices[answer_index]}")
|
48 |
print(f"Model Answer: {model_answer}")
|
svc/router.py
CHANGED
@@ -10,6 +10,7 @@ import os
|
|
10 |
import json
|
11 |
from src.deepeval.deepeval_task_manager import DeepEvalTaskManager
|
12 |
import torch
|
|
|
13 |
from time import time
|
14 |
from huggingface_hub import HfApi, ModelInfo
|
15 |
|
@@ -111,9 +112,15 @@ async def deep_eval_suite(request: DeepEvalSuiteRequest):
|
|
111 |
"end_time": end_time
|
112 |
}
|
113 |
|
114 |
-
|
115 |
json_results = json.dumps(tbr_dict)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return TaskResponse(results=json_results)
|
118 |
|
119 |
|
|
|
10 |
import json
|
11 |
from src.deepeval.deepeval_task_manager import DeepEvalTaskManager
|
12 |
import torch
|
13 |
+
import gc
|
14 |
from time import time
|
15 |
from huggingface_hub import HfApi, ModelInfo
|
16 |
|
|
|
112 |
"end_time": end_time
|
113 |
}
|
114 |
|
|
|
115 |
json_results = json.dumps(tbr_dict)
|
116 |
|
117 |
+
#Free up VRAM
|
118 |
+
torch.cuda.empty_cache()
|
119 |
+
|
120 |
+
#Free up RAM
|
121 |
+
des = None
|
122 |
+
gc.collect()
|
123 |
+
|
124 |
return TaskResponse(results=json_results)
|
125 |
|
126 |
|