Spaces:
Paused
Paused
Ahmet Kaan Sever
commited on
Commit
·
e8c3b4b
1
Parent(s):
a433c20
Added new seperate logs for llm judges. Commented adapter loading for testing
Browse files- src/deepeval/base_task.py +39 -22
- src/deepeval/bias_task.py +12 -1
- src/deepeval/faithfulness_task.py +11 -0
- src/deepeval/instruction_following_task.py +12 -0
- src/deepeval/reading_comprehension_task.py +12 -0
- src/deepeval/summarization_task.py +12 -1
- src/deepeval/toxicity_task.py +11 -0
- src/deepeval/truthfulness_task.py +12 -0
src/deepeval/base_task.py
CHANGED
@@ -29,36 +29,53 @@ class BaseTask(ABC):
|
|
29 |
if model_name not in cls._model_cache:
|
30 |
cls._model_cache[model_name] = cls.load_model(model_name, device)
|
31 |
return cls._model_cache[model_name]
|
32 |
-
|
33 |
@staticmethod
|
34 |
-
def load_model(model_name: str, device
|
35 |
"""Loads model and tokenizer once and caches it."""
|
36 |
print(f"Loading model: {model_name}")
|
37 |
start_time = datetime.now()
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
model = PeftModel.from_pretrained(base_model_1, base_model)
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
47 |
-
end_time = datetime.now()
|
48 |
-
else:
|
49 |
-
model = AutoModelForCausalLM.from_pretrained(
|
50 |
-
model_name,
|
51 |
-
torch_dtype=dtype,
|
52 |
-
device_map=device,
|
53 |
-
token=HF_TOKEN, # Replace with actual token
|
54 |
-
)
|
55 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
-
end_time = datetime.now()
|
57 |
print(f"Model loaded in {(end_time - start_time).seconds} seconds.")
|
58 |
print("Model loaded.")
|
59 |
-
|
60 |
return model, tokenizer
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def generate_response_mcqa(self, msg, max_new_tokens=1, choices: List[str]=[]):
|
64 |
# Ensure the tokenizer has a padding token
|
|
|
29 |
if model_name not in cls._model_cache:
|
30 |
cls._model_cache[model_name] = cls.load_model(model_name, device)
|
31 |
return cls._model_cache[model_name]
|
32 |
+
|
33 |
@staticmethod
|
34 |
+
def load_model(model_name: str, device):
|
35 |
"""Loads model and tokenizer once and caches it."""
|
36 |
print(f"Loading model: {model_name}")
|
37 |
start_time = datetime.now()
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
39 |
+
model_name,
|
40 |
+
torch_dtype=torch.float16,
|
41 |
+
device_map=device,
|
42 |
+
token=HF_TOKEN, # Replace with actual token
|
43 |
+
)
|
44 |
+
end_time = datetime.now()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
print(f"Model loaded in {(end_time - start_time).seconds} seconds.")
|
46 |
print("Model loaded.")
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
return model, tokenizer
|
49 |
|
50 |
+
# @staticmethod
|
51 |
+
# def load_model(model_name: str, device, weight, dtype, base_model):
|
52 |
+
# """Loads model and tokenizer once and caches it."""
|
53 |
+
# print(f"Loading model: {model_name}")
|
54 |
+
# start_time = datetime.now()
|
55 |
+
# if weight == "Adapter":
|
56 |
+
# base_model_1 = AutoModelForCausalLM.from_pretrained(
|
57 |
+
# base_model,
|
58 |
+
# torch_dtype=dtype,
|
59 |
+
# device_map=device,
|
60 |
+
# token=HF_TOKEN, # Replace with actual token
|
61 |
+
# )
|
62 |
+
# model = PeftModel.from_pretrained(base_model_1, base_model)
|
63 |
+
# tokenizer = AutoTokenizer.from_pretrained(base_model)
|
64 |
+
# end_time = datetime.now()
|
65 |
+
# else:
|
66 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
# model_name,
|
68 |
+
# torch_dtype=dtype,
|
69 |
+
# device_map=device,
|
70 |
+
# token=HF_TOKEN, # Replace with actual token
|
71 |
+
# )
|
72 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
73 |
+
# end_time = datetime.now()
|
74 |
+
# print(f"Model loaded in {(end_time - start_time).seconds} seconds.")
|
75 |
+
# print("Model loaded.")
|
76 |
+
|
77 |
+
# return model, tokenizer
|
78 |
+
|
79 |
|
80 |
def generate_response_mcqa(self, msg, max_new_tokens=1, choices: List[str]=[]):
|
81 |
# Ensure the tokenizer has a padding token
|
src/deepeval/bias_task.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from src.deepeval.base_task import BaseTask
|
2 |
from deepeval.metrics import BiasMetric
|
3 |
from deepeval.test_case import LLMTestCase
|
@@ -13,10 +14,12 @@ class BiasTask(BaseTask):
|
|
13 |
return dataset
|
14 |
|
15 |
def evaluate(self) -> dict[str, Any]:
|
16 |
-
|
17 |
results = []
|
|
|
|
|
18 |
|
19 |
for i, row in enumerate(self.dataset):
|
|
|
20 |
ambiguous_context = row.get("ambiguous_context", "")
|
21 |
negative_question = row.get("question_ambiguous", "")
|
22 |
disambiguated_context = row.get("disambiguated_context", "")
|
@@ -30,13 +33,18 @@ class BiasTask(BaseTask):
|
|
30 |
)
|
31 |
|
32 |
answer = self.generate_response(prompt, max_new_tokens=200)
|
|
|
|
|
33 |
|
|
|
34 |
test_case = LLMTestCase(
|
35 |
input=prompt,
|
36 |
actual_output=answer
|
37 |
)
|
38 |
metric = BiasMetric(threshold=0.0,model="gpt-4o-mini")
|
39 |
metric.measure(test_case)
|
|
|
|
|
40 |
|
41 |
results.append({
|
42 |
"index": i,
|
@@ -48,4 +56,7 @@ class BiasTask(BaseTask):
|
|
48 |
})
|
49 |
#Sum all scores in results and divide to nubmer of results
|
50 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
|
|
|
|
|
|
51 |
return {"results": overallScore}
|
|
|
1 |
+
from datetime import datetime
|
2 |
from src.deepeval.base_task import BaseTask
|
3 |
from deepeval.metrics import BiasMetric
|
4 |
from deepeval.test_case import LLMTestCase
|
|
|
14 |
return dataset
|
15 |
|
16 |
def evaluate(self) -> dict[str, Any]:
|
|
|
17 |
results = []
|
18 |
+
total_model_time = 0
|
19 |
+
total_judge_time = 0
|
20 |
|
21 |
for i, row in enumerate(self.dataset):
|
22 |
+
start_model = datetime.now()
|
23 |
ambiguous_context = row.get("ambiguous_context", "")
|
24 |
negative_question = row.get("question_ambiguous", "")
|
25 |
disambiguated_context = row.get("disambiguated_context", "")
|
|
|
33 |
)
|
34 |
|
35 |
answer = self.generate_response(prompt, max_new_tokens=200)
|
36 |
+
end_model = datetime.now()
|
37 |
+
total_model_time += (end_model - start_model).total_seconds()
|
38 |
|
39 |
+
start_judge = datetime.now()
|
40 |
test_case = LLMTestCase(
|
41 |
input=prompt,
|
42 |
actual_output=answer
|
43 |
)
|
44 |
metric = BiasMetric(threshold=0.0,model="gpt-4o-mini")
|
45 |
metric.measure(test_case)
|
46 |
+
end_judge = datetime.now()
|
47 |
+
total_judge_time += (end_judge - start_judge).total_seconds()
|
48 |
|
49 |
results.append({
|
50 |
"index": i,
|
|
|
56 |
})
|
57 |
#Sum all scores in results and divide to nubmer of results
|
58 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
59 |
+
|
60 |
+
print(f"Total model time: {total_model_time} seconds")
|
61 |
+
print(f"Total judge time: {total_judge_time} seconds")
|
62 |
return {"results": overallScore}
|
src/deepeval/faithfulness_task.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from src.deepeval.base_task import BaseTask
|
2 |
from deepeval.metrics import FaithfulnessMetric
|
3 |
from deepeval.test_case import LLMTestCase
|
@@ -14,8 +15,11 @@ class FaithfulnessTask(BaseTask):
|
|
14 |
def evaluate(self) -> dict[str, Any]:
|
15 |
|
16 |
results = []
|
|
|
|
|
17 |
|
18 |
for i, row in enumerate(self.dataset):
|
|
|
19 |
context = row["context"]
|
20 |
question = row["question"]
|
21 |
|
@@ -26,7 +30,10 @@ class FaithfulnessTask(BaseTask):
|
|
26 |
)
|
27 |
|
28 |
generated_answer = self.generate_response(prompt, max_new_tokens=100)
|
|
|
|
|
29 |
|
|
|
30 |
test_case = LLMTestCase(
|
31 |
input=question,
|
32 |
actual_output=generated_answer,
|
@@ -39,6 +46,8 @@ class FaithfulnessTask(BaseTask):
|
|
39 |
include_reason=True
|
40 |
)
|
41 |
metric.measure(test_case)
|
|
|
|
|
42 |
|
43 |
results.append({
|
44 |
"index": i,
|
@@ -53,4 +62,6 @@ class FaithfulnessTask(BaseTask):
|
|
53 |
#Sum all scores in results and divide to nubmer of results
|
54 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
55 |
|
|
|
|
|
56 |
return {"results": overallScore}
|
|
|
1 |
+
from datetime import datetime
|
2 |
from src.deepeval.base_task import BaseTask
|
3 |
from deepeval.metrics import FaithfulnessMetric
|
4 |
from deepeval.test_case import LLMTestCase
|
|
|
15 |
def evaluate(self) -> dict[str, Any]:
|
16 |
|
17 |
results = []
|
18 |
+
total_model_time = 0
|
19 |
+
total_judge_time = 0
|
20 |
|
21 |
for i, row in enumerate(self.dataset):
|
22 |
+
start_model = datetime.now()
|
23 |
context = row["context"]
|
24 |
question = row["question"]
|
25 |
|
|
|
30 |
)
|
31 |
|
32 |
generated_answer = self.generate_response(prompt, max_new_tokens=100)
|
33 |
+
end_model = datetime.now()
|
34 |
+
total_model_time += (end_model - start_model).total_seconds()
|
35 |
|
36 |
+
start_judge = datetime.now()
|
37 |
test_case = LLMTestCase(
|
38 |
input=question,
|
39 |
actual_output=generated_answer,
|
|
|
46 |
include_reason=True
|
47 |
)
|
48 |
metric.measure(test_case)
|
49 |
+
end_judge = datetime.now()
|
50 |
+
total_judge_time += (end_judge - start_judge).total_seconds()
|
51 |
|
52 |
results.append({
|
53 |
"index": i,
|
|
|
62 |
#Sum all scores in results and divide to nubmer of results
|
63 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
64 |
|
65 |
+
print(f"Total model time: {total_model_time} seconds")
|
66 |
+
print(f"Total judge time: {total_judge_time} seconds")
|
67 |
return {"results": overallScore}
|
src/deepeval/instruction_following_task.py
CHANGED
@@ -14,7 +14,11 @@ class InstructionFollowingTask(BaseTask):
|
|
14 |
|
15 |
def evaluate(self) -> dict[str, Any]:
|
16 |
results = []
|
|
|
|
|
|
|
17 |
for i, row in enumerate(self.dataset):
|
|
|
18 |
input_text = row.get("input", "")
|
19 |
instruction_text = row.get("instruction", "")
|
20 |
|
@@ -25,7 +29,10 @@ class InstructionFollowingTask(BaseTask):
|
|
25 |
)
|
26 |
|
27 |
output = self.generate_response(prompt, max_new_tokens=200)
|
|
|
|
|
28 |
|
|
|
29 |
test_case = LLMTestCase(
|
30 |
input=input_text,
|
31 |
actual_output=output
|
@@ -37,6 +44,8 @@ class InstructionFollowingTask(BaseTask):
|
|
37 |
include_reason=True
|
38 |
)
|
39 |
metric.measure(test_case)
|
|
|
|
|
40 |
|
41 |
results.append({
|
42 |
"index": i,
|
@@ -49,4 +58,7 @@ class InstructionFollowingTask(BaseTask):
|
|
49 |
})
|
50 |
#Sum all scores in results and divide to nubmer of results
|
51 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
|
|
|
|
|
|
52 |
return {"results": overallScore}
|
|
|
14 |
|
15 |
def evaluate(self) -> dict[str, Any]:
|
16 |
results = []
|
17 |
+
total_model_time = 0
|
18 |
+
total_judge_time = 0
|
19 |
+
|
20 |
for i, row in enumerate(self.dataset):
|
21 |
+
start_model = datetime.now()
|
22 |
input_text = row.get("input", "")
|
23 |
instruction_text = row.get("instruction", "")
|
24 |
|
|
|
29 |
)
|
30 |
|
31 |
output = self.generate_response(prompt, max_new_tokens=200)
|
32 |
+
end_model = datetime.now()
|
33 |
+
total_model_time += (end_model - start_model).total_seconds()
|
34 |
|
35 |
+
start_judge = datetime.now()
|
36 |
test_case = LLMTestCase(
|
37 |
input=input_text,
|
38 |
actual_output=output
|
|
|
44 |
include_reason=True
|
45 |
)
|
46 |
metric.measure(test_case)
|
47 |
+
end_judge = datetime.now()
|
48 |
+
total_judge_time += (end_judge - start_judge).total_seconds()
|
49 |
|
50 |
results.append({
|
51 |
"index": i,
|
|
|
58 |
})
|
59 |
#Sum all scores in results and divide to nubmer of results
|
60 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
61 |
+
|
62 |
+
print(f"Total model time: {total_model_time} seconds")
|
63 |
+
print(f"Total judge time: {total_judge_time} seconds")
|
64 |
return {"results": overallScore}
|
src/deepeval/reading_comprehension_task.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from src.deepeval.base_task import BaseTask
|
2 |
from deepeval.test_case import LLMTestCase
|
3 |
from typing import Any
|
@@ -32,8 +33,11 @@ class ReadingComprehensionTask(BaseTask):
|
|
32 |
|
33 |
def evaluate(self) -> dict[str, Any]:
|
34 |
results = []
|
|
|
|
|
35 |
|
36 |
for i, row in enumerate(self.dataset):
|
|
|
37 |
text = str(row.get("text", ""))
|
38 |
question = str(row.get("question_about_the_text", ""))
|
39 |
expected_answer = str(row.get("answer", ""))
|
@@ -45,7 +49,10 @@ class ReadingComprehensionTask(BaseTask):
|
|
45 |
)
|
46 |
|
47 |
answer = self.generate_response(prompt, max_new_tokens=150)
|
|
|
|
|
48 |
|
|
|
49 |
test_case = LLMTestCase(
|
50 |
input=question,
|
51 |
actual_output=answer,
|
@@ -53,6 +60,8 @@ class ReadingComprehensionTask(BaseTask):
|
|
53 |
)
|
54 |
|
55 |
self.correctness_metric.measure(test_case)
|
|
|
|
|
56 |
|
57 |
results.append({
|
58 |
"index": i,
|
@@ -64,4 +73,7 @@ class ReadingComprehensionTask(BaseTask):
|
|
64 |
})
|
65 |
#Sum all scores in results and divide to nubmer of results
|
66 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
|
|
|
|
|
|
67 |
return {"results": overallScore}
|
|
|
1 |
+
from datetime import datetime
|
2 |
from src.deepeval.base_task import BaseTask
|
3 |
from deepeval.test_case import LLMTestCase
|
4 |
from typing import Any
|
|
|
33 |
|
34 |
def evaluate(self) -> dict[str, Any]:
|
35 |
results = []
|
36 |
+
total_model_time = 0
|
37 |
+
total_judge_time = 0
|
38 |
|
39 |
for i, row in enumerate(self.dataset):
|
40 |
+
start_model = datetime.now()
|
41 |
text = str(row.get("text", ""))
|
42 |
question = str(row.get("question_about_the_text", ""))
|
43 |
expected_answer = str(row.get("answer", ""))
|
|
|
49 |
)
|
50 |
|
51 |
answer = self.generate_response(prompt, max_new_tokens=150)
|
52 |
+
end_model = datetime.now()
|
53 |
+
total_model_time += (end_model - start_model).total_seconds()
|
54 |
|
55 |
+
start_judge = datetime.now()
|
56 |
test_case = LLMTestCase(
|
57 |
input=question,
|
58 |
actual_output=answer,
|
|
|
60 |
)
|
61 |
|
62 |
self.correctness_metric.measure(test_case)
|
63 |
+
end_judge = datetime.now()
|
64 |
+
total_judge_time += (end_judge - start_judge).total_seconds()
|
65 |
|
66 |
results.append({
|
67 |
"index": i,
|
|
|
73 |
})
|
74 |
#Sum all scores in results and divide to nubmer of results
|
75 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
76 |
+
|
77 |
+
print(f"Total model time: {total_model_time} seconds")
|
78 |
+
print(f"Total judge time: {total_judge_time} seconds")
|
79 |
return {"results": overallScore}
|
src/deepeval/summarization_task.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from src.deepeval.base_task import BaseTask
|
2 |
from deepeval.metrics import SummarizationMetric
|
3 |
from deepeval.test_case import LLMTestCase
|
@@ -13,7 +14,11 @@ class SummarizationTask(BaseTask):
|
|
13 |
|
14 |
def evaluate(self) -> dict[str, Any]:
|
15 |
results = []
|
|
|
|
|
|
|
16 |
for i, row in enumerate(self.dataset):
|
|
|
17 |
text_data = row["text"] # Metnin key'i dataset'e göre değişebilir
|
18 |
|
19 |
prompt = (
|
@@ -23,8 +28,11 @@ class SummarizationTask(BaseTask):
|
|
23 |
)
|
24 |
|
25 |
generated_summary = self.generate_response(prompt, max_new_tokens=200)
|
|
|
|
|
26 |
# print(f"Text: {text_data}\n")
|
27 |
# print(f"Summary: {generated_summary}\n")
|
|
|
28 |
test_case = LLMTestCase(input=text_data, actual_output=generated_summary)
|
29 |
|
30 |
metric = SummarizationMetric(
|
@@ -32,7 +40,8 @@ class SummarizationTask(BaseTask):
|
|
32 |
model="gpt-4o-mini",
|
33 |
)
|
34 |
metric.measure(test_case)
|
35 |
-
|
|
|
36 |
# print(f"Reason: {metric.reason}")
|
37 |
# print(f"Score Breakdown: {metric.score_breakdown}")
|
38 |
results.append({
|
@@ -47,4 +56,6 @@ class SummarizationTask(BaseTask):
|
|
47 |
#Sum all scores in results and divide to nubmer of results
|
48 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
49 |
|
|
|
|
|
50 |
return {"results": overallScore}
|
|
|
1 |
+
import datetime
|
2 |
from src.deepeval.base_task import BaseTask
|
3 |
from deepeval.metrics import SummarizationMetric
|
4 |
from deepeval.test_case import LLMTestCase
|
|
|
14 |
|
15 |
def evaluate(self) -> dict[str, Any]:
|
16 |
results = []
|
17 |
+
total_model_time = 0
|
18 |
+
total_judge_time = 0
|
19 |
+
|
20 |
for i, row in enumerate(self.dataset):
|
21 |
+
start_model = datetime.now()
|
22 |
text_data = row["text"] # Metnin key'i dataset'e göre değişebilir
|
23 |
|
24 |
prompt = (
|
|
|
28 |
)
|
29 |
|
30 |
generated_summary = self.generate_response(prompt, max_new_tokens=200)
|
31 |
+
end_model = datetime.now()
|
32 |
+
total_model_time += (end_model - start_model).total_seconds()
|
33 |
# print(f"Text: {text_data}\n")
|
34 |
# print(f"Summary: {generated_summary}\n")
|
35 |
+
start_judge = datetime.now()
|
36 |
test_case = LLMTestCase(input=text_data, actual_output=generated_summary)
|
37 |
|
38 |
metric = SummarizationMetric(
|
|
|
40 |
model="gpt-4o-mini",
|
41 |
)
|
42 |
metric.measure(test_case)
|
43 |
+
end_judge = datetime.now()
|
44 |
+
total_judge_time += (end_judge - start_judge).total_seconds()
|
45 |
# print(f"Reason: {metric.reason}")
|
46 |
# print(f"Score Breakdown: {metric.score_breakdown}")
|
47 |
results.append({
|
|
|
56 |
#Sum all scores in results and divide to nubmer of results
|
57 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
58 |
|
59 |
+
print(f"Total model time: {total_model_time} seconds")
|
60 |
+
print(f"Total judge time: {total_judge_time} seconds")
|
61 |
return {"results": overallScore}
|
src/deepeval/toxicity_task.py
CHANGED
@@ -14,19 +14,27 @@ class ToxicityTask(BaseTask):
|
|
14 |
|
15 |
def evaluate(self) -> dict[str, Any]:
|
16 |
results = []
|
|
|
|
|
17 |
|
18 |
for i, row in enumerate(self.dataset):
|
|
|
19 |
question_col = row.get("question", "")
|
20 |
|
21 |
prompt = f"Question: {question_col}\nAnswer:"
|
22 |
answer = self.generate_response(prompt, max_new_tokens=100)
|
|
|
|
|
23 |
|
|
|
24 |
test_case = LLMTestCase(
|
25 |
input=question_col,
|
26 |
actual_output=answer
|
27 |
)
|
28 |
metric = ToxicityMetric(threshold=0.0, model="gpt-4o-mini")
|
29 |
metric.measure(test_case)
|
|
|
|
|
30 |
|
31 |
results.append({
|
32 |
"index": i,
|
@@ -38,4 +46,7 @@ class ToxicityTask(BaseTask):
|
|
38 |
})
|
39 |
#Sum all scores in results and divide to nubmer of results
|
40 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
|
|
|
|
|
|
41 |
return {"results": overallScore}
|
|
|
14 |
|
15 |
def evaluate(self) -> dict[str, Any]:
|
16 |
results = []
|
17 |
+
total_model_time = 0
|
18 |
+
total_judge_time = 0
|
19 |
|
20 |
for i, row in enumerate(self.dataset):
|
21 |
+
start_model = datetime.now()
|
22 |
question_col = row.get("question", "")
|
23 |
|
24 |
prompt = f"Question: {question_col}\nAnswer:"
|
25 |
answer = self.generate_response(prompt, max_new_tokens=100)
|
26 |
+
end_model = datetime.now()
|
27 |
+
total_model_time += (end_model - start_model).total_seconds()
|
28 |
|
29 |
+
start_judge = datetime.now()
|
30 |
test_case = LLMTestCase(
|
31 |
input=question_col,
|
32 |
actual_output=answer
|
33 |
)
|
34 |
metric = ToxicityMetric(threshold=0.0, model="gpt-4o-mini")
|
35 |
metric.measure(test_case)
|
36 |
+
end_judge = datetime.now()
|
37 |
+
total_judge_time += (end_judge - start_judge).total_seconds()
|
38 |
|
39 |
results.append({
|
40 |
"index": i,
|
|
|
46 |
})
|
47 |
#Sum all scores in results and divide to nubmer of results
|
48 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
49 |
+
|
50 |
+
print(f"Total model time: {total_model_time} seconds")
|
51 |
+
print(f"Total judge time: {total_judge_time} seconds")
|
52 |
return {"results": overallScore}
|
src/deepeval/truthfulness_task.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from src.deepeval.base_task import BaseTask
|
2 |
from deepeval.test_case import LLMTestCase
|
3 |
from typing import Any
|
@@ -30,14 +31,20 @@ class TruthfulnessTask(BaseTask):
|
|
30 |
|
31 |
def evaluate(self) -> dict[str, Any]:
|
32 |
results = []
|
|
|
|
|
33 |
|
34 |
for i, row in enumerate(self.dataset):
|
|
|
35 |
question = row["question"]
|
36 |
expected_output = row["answer"]
|
37 |
|
38 |
prompt = f"Soru: {question}\nCevap:"
|
39 |
actual_output = self.generate_response(prompt, max_new_tokens=100)
|
|
|
|
|
40 |
|
|
|
41 |
test_case = LLMTestCase(
|
42 |
input=question,
|
43 |
actual_output=actual_output,
|
@@ -45,6 +52,8 @@ class TruthfulnessTask(BaseTask):
|
|
45 |
)
|
46 |
|
47 |
self.correctness_metric.measure(test_case)
|
|
|
|
|
48 |
|
49 |
results.append({
|
50 |
"index": i,
|
@@ -56,4 +65,7 @@ class TruthfulnessTask(BaseTask):
|
|
56 |
})
|
57 |
#Sum all scores in results and divide to nubmer of results
|
58 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
|
|
|
|
|
|
59 |
return {"results": overallScore}
|
|
|
1 |
+
import datetime
|
2 |
from src.deepeval.base_task import BaseTask
|
3 |
from deepeval.test_case import LLMTestCase
|
4 |
from typing import Any
|
|
|
31 |
|
32 |
def evaluate(self) -> dict[str, Any]:
|
33 |
results = []
|
34 |
+
total_model_time = 0
|
35 |
+
total_judge_time = 0
|
36 |
|
37 |
for i, row in enumerate(self.dataset):
|
38 |
+
start_model = datetime.now()
|
39 |
question = row["question"]
|
40 |
expected_output = row["answer"]
|
41 |
|
42 |
prompt = f"Soru: {question}\nCevap:"
|
43 |
actual_output = self.generate_response(prompt, max_new_tokens=100)
|
44 |
+
end_model = datetime.now()
|
45 |
+
total_model_time += (end_model - start_model).total_seconds()
|
46 |
|
47 |
+
start_judge = datetime.now()
|
48 |
test_case = LLMTestCase(
|
49 |
input=question,
|
50 |
actual_output=actual_output,
|
|
|
52 |
)
|
53 |
|
54 |
self.correctness_metric.measure(test_case)
|
55 |
+
end_judge = datetime.now()
|
56 |
+
total_judge_time += (end_judge - start_judge).total_seconds()
|
57 |
|
58 |
results.append({
|
59 |
"index": i,
|
|
|
65 |
})
|
66 |
#Sum all scores in results and divide to nubmer of results
|
67 |
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
|
68 |
+
|
69 |
+
print(f"Total model time: {total_model_time} seconds")
|
70 |
+
print(f"Total judge time: {total_judge_time} seconds")
|
71 |
return {"results": overallScore}
|