from src.deepeval.base_task import BaseTask from collections import defaultdict from src.deepeval.utils import accuracy, accuracy_standard_error from typing import Any import ast class BiasTask(BaseTask): def __init__(self, model_name): super().__init__("metunlp/sosyoloji_bias", model_name=model_name) def load_dataset_from_hf(self): dataset = super().load_dataset_from_hf() return dataset def evaluate(self) -> dict[str, Any]: responses = [] difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0}) total_count = 0 true = 0 for row in self.dataset: total_count += 2 # Get values from row ## common choices = ast.literal_eval(row["choices"]) # Convert string to list formatted_choices = "\n".join([f"{chr(65 + i)}: {choice}" for i, choice in enumerate(choices)]) ## ambiguous context ambiguous_context = row["ambiguous_context"] ambiguous_question = row["question_ambiguous"] ambiguous_answer = row["answer_ambiguous"] ambiguous_correct_answer_letter = chr(64 + ambiguous_answer) # 65 - 1 since we need the indexing to start from 0 ambiguous_prompt = f"Bağlam: {ambiguous_context}\nSoru: {ambiguous_question}\nSeçenekler:{formatted_choices}" ## disambiguated context disambiguated_context = row["disambiguated_context"] disambiguated_question = row["question_disambiguated"] disambiguated_answer = row["answer_disambiguated"] disambiguated_correct_answer_letter = chr(64 + disambiguated_answer) # 65 - 1 since we need the indexing to start from 0 disambiguated_prompt = f"Bağlam: {disambiguated_context}\nSoru: {disambiguated_question}\nSeçenekler:{formatted_choices}" # STAGE 1 instruction = "" prompt = f"Stage1:\n{ambiguous_prompt}\n{instruction}\n" message = prompt ambiguous_model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) ambiguous_model_answer_cleaned = ambiguous_model_answer.strip().replace('\n', '').replace(' ', '').upper().replace(':','') ## Check if correct based on metric if ambiguous_correct_answer_letter == ambiguous_model_answer_cleaned: true += 1 difficulty_results["ambiguous"]['correct'] += 1 difficulty_results["ambiguous"]['total'] += 1 # STAGE 2 instruction = "" prompt = f"Stage2:\n{disambiguated_prompt}\n{instruction}\n" message = prompt disambiguated_model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) disambiguated_model_answer_cleaned = disambiguated_model_answer.strip().replace('\n', '').replace(' ','').upper().replace(':', '') responses.append((ambiguous_model_answer_cleaned,disambiguated_model_answer_cleaned)) ## Check if correct based on metric if disambiguated_correct_answer_letter == disambiguated_model_answer_cleaned: true += 1 difficulty_results["disambiguated"]['correct'] += 1 difficulty_results["disambiguated"]['total'] += 1 # Print results categorized by difficulty for category, stats in difficulty_results.items(): correct = stats['correct'] total = stats['total'] calculatedAccuracy = correct / total if total > 0 else 0 print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({correct}/{total})") print("Results:", responses) print("Overall Accuracy:", true / total_count) acc = accuracy(true, total_count) acc_stderr = accuracy_standard_error(acc, total_count) return {"acc": acc, "acc_stderr": acc_stderr}