from src.deepeval.base_task import BaseTask from collections import defaultdict from src.deepeval.utils import accuracy, accuracy_standard_error from typing import Any class CommonsenseReasoningTask(BaseTask): def __init__(self, model_name): super().__init__("metunlp/commonsense", model_name=model_name) def load_dataset_from_hf(self): dataset = super().load_dataset_from_hf() return dataset def evaluate(self) -> dict[str, Any]: responses = [] difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0}) total_count = 0 true = 0 for row in self.dataset: total_count += 1 # Get values from row label = row["label"] choices=[row["choice1"], row["choice2"]] formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)]) category = row["difficulty"] answer = row["answer"] text = row["text"] context = row["context"] # Prints for debugging # print(f"Choices: {choices}") # print("Type of choices:", type(choices)) # print("Type of answer:", type(answer)) # Get answer index (starting from 0) if type(answer) == int: answer_index = answer - 1 # 1 or 2 else: answer_index = int(answer) - 1 correct_answer_letter = chr(65 + answer_index) # Get question based on label if label == "effect": question = "Seçeneklerden hangisi verilen önermenin bir sonucu veya etkisi olabilir?" elif label == "cause": question = "Seçeneklerden hangisi verilen önermenin bir neden veya sebebi olabilir?" else: question = "Seçeneklerden hangisi uygun?" # Alternatif # Construct the prompt/message instruction = "" prompt = f"Bağlam:\n{text}\nÖnerme:\n{context}\nSoru:{question}\nSeçenekler:\n{formatted_choices}\n{instruction}\n" message = prompt # Get/format answer of the model model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) responses.append(model_answer) model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper() # Print answers # print(f"Correct Answer: {correct_answer_letter}") # print(f"Model Answer: {model_answer}") # print(f"Model Answer Cleaned: {model_answer_cleaned}") # Check if correct based on metric if correct_answer_letter == model_answer_cleaned: true += 1 difficulty_results[category]['correct'] += 1 difficulty_results[category]['total'] += 1 # Print results categorized by difficulty for category, stats in difficulty_results.items(): calculatedAccuracy = stats['correct'] / stats['total'] if stats['total'] > 0 else 0 print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({stats['correct']}/{stats['total']})") print("Results:", responses) print("Overall Accuracy:", true / total_count) acc = accuracy(true, total_count) acc_stderr = accuracy_standard_error(acc, total_count) return {"acc": acc, "acc_stderr": acc_stderr}