from src.deepeval.base_task import BaseTask from collections import defaultdict from src.deepeval.utils import accuracy, accuracy_standard_error from typing import Any import ast class ComplexReasoningTask(BaseTask): def __init__(self, model_name): super().__init__("metunlp/complex-ales", model_name=model_name) def load_dataset_from_hf(self): dataset = super().load_dataset_from_hf() return dataset def evaluate(self) -> dict[str, Any]: responses = [] correct_answers = [] total_count = 0 true = 0 for row in self.dataset: total_count += 1 # Get values from row choices = ast.literal_eval(row["choices"]) # Convert string to list narrative = row["narrative"] question = row["question"] formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)]) correct_answer_letter = row["answer_choice"] correct_answers.append(correct_answer_letter) # Prints for debugging # print(f"Choices: {choices}") # print("Type of choices:", type(choices)) # Construct the prompt/message instruction = "" prompt = f"Soru:\n{narrative}\n{question}\nSeçenekler:\n{formatted_choices}\n{instruction}\n" message = prompt # Get/format answer of the model model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) responses.append(model_answer) model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper().replace(':','') if correct_answer_letter == model_answer_cleaned: true += 1 # Print answers # print(f"Correct Answer: {correct_answer_letter}") # print(f"Model Answer: {model_answer}") # print(f"Model Answer Cleaned: {model_answer_cleaned}") print("Answers:", correct_answers) print("Results:", responses) print("Overall Accuracy:", true / total_count) acc = accuracy(true, total_count) acc_stderr = accuracy_standard_error(acc, total_count) return {"acc": acc, "acc_stderr": acc_stderr}