from datetime import datetime from src.deepeval.base_task import BaseTask from deepeval.metrics import PromptAlignmentMetric from deepeval.test_case import LLMTestCase from typing import Any class InstructionFollowingTask(BaseTask): def __init__(self, model_name: str): super().__init__("metunlp/instruction_following_tr", model_name=model_name) def load_dataset_from_hf(self): dataset = super().load_dataset_lmjudge_from_hf() return dataset def evaluate(self) -> dict[str, Any]: results = [] total_model_time = 0 total_judge_time = 0 for i, row in enumerate(self.dataset): start_model = datetime.now() input_text = row.get("input", "") instruction_text = row.get("instruction", "") prompt = ( f"Girdi: {input_text}\n" f"Talimat: {instruction_text}\n" f"Çıkıt:" ) output = self.generate_response(prompt, max_new_tokens=200) end_model = datetime.now() total_model_time += (end_model - start_model).total_seconds() start_judge = datetime.now() test_case = LLMTestCase( input=input_text, actual_output=output ) metric = PromptAlignmentMetric( prompt_instructions=[instruction_text], model="gpt-4o-mini", include_reason=True ) metric.measure(test_case) end_judge = datetime.now() total_judge_time += (end_judge - start_judge).total_seconds() results.append({ "index": i, "score": metric.score, "reason": metric.reason, "score_breakdown": metric.score_breakdown, "input": input_text, "instruction": instruction_text, "output": output }) #Sum all scores in results and divide to nubmer of results overallScore = (sum([result["score"] for result in results]) / len(results)) * 100 print(f"Total model time: {total_model_time} seconds") print(f"Total judge time: {total_judge_time} seconds") return {"results": overallScore}