from src.deepeval.base_task import BaseTask from collections import defaultdict from src.deepeval.utils import accuracy, accuracy_standard_error from typing import Any import re from datasets import load_dataset import os from dotenv import load_dotenv import openai from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor import torch from typing import List class STSTask(BaseTask): def __init__(self, model_name): super().__init__("metunlp/sts_tr", model_name=model_name) def load_dataset_from_hf(self): dataset = super().load_dataset_from_hf() return dataset def generate_response_sts_multi_token(self, msg, max_new_tokens=5, choices: list = []): """ Handles multiple-choice questions where answers might have multiple tokens. """ # Ensure tokenizer has proper special tokens set if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token if self.model.config.pad_token_id is None: self.model.config.pad_token_id = self.tokenizer.pad_token_id chat = [ {"role": "user", "content": "You are a sentence similarity scoring chatbot. Only respond with one of the given scores: 0, 1, 2, 3, 4, or 5."}, {"role": "assistant", "content": "I am ready to answer your questions. Feel free to ask anything.\n"}, {"role": "user", "content": f"{msg}"}, ] formatted_chat = self.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) inputs = self.tokenizer(formatted_chat, return_tensors="pt", padding=True, truncation=True) input_ids = inputs.input_ids.to(self.model.device) attention_mask = inputs.attention_mask.to(self.model.device) # Generate the sequence of letters starting from 'A' letters = ["0","1","2","3","4","5"] encoded_choices = [self.tokenizer.encode(letter, add_special_tokens=False) for letter in letters] flattened_encoded_choices = [item for sublist in encoded_choices for item in sublist] # Flatten the list allowed_tokens = flattened_encoded_choices allowed_tokens += self.get_chat_template_tokens() # Get the special chat tokens allowed_token_ids = set(allowed_tokens) # Ensure uniqueness # Custom LogitsProcessor to restrict generation class RestrictToABCDLogitsProcessor(LogitsProcessor): def __call__(self, input_ids, scores): mask = torch.full_like(scores, float("-inf")) # Block all tokens mask[:, list(allowed_token_ids)] = scores[:, list(allowed_token_ids)] # Allow only A, B, C, D tokens return mask logits_processor = LogitsProcessorList([RestrictToABCDLogitsProcessor()]) # Generate response output = self.model.generate( input_ids, do_sample=True, attention_mask=attention_mask, max_new_tokens=max_new_tokens, eos_token_id=self.tokenizer.eos_token_id, pad_token_id=self.tokenizer.pad_token_id, temperature=0.4, logits_processor=logits_processor, ) generated_ids = output[0] # The generated sequence including the prompt generated_tokens = generated_ids[len(input_ids[0]):] # Exclude the input_ids part generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True) return generated_text def evaluate(self) -> dict[str, Any]: responses = [] difficulty_results = {'correct': 0, 'total': 0} total_count = 0 true = 0 for row in self.dataset: total_count += 1 # Get values from row answer = row["score"] choices = ["0","1","2","3","4","5"] sentence_1 = row["sentence_1"] sentence_2 = row["sentence_2"] # Construct the prompt/message instruction = f"Aşağıda verilen iki cümlenin birbirlerine olan anlamsal benzerliğini 0'dan 5'e kadar olan bir tam sayıyla söyleyin." prompt = f"""{instruction}\nCümle 1: {sentence_1}\nCümle 2: {sentence_2}\nSadece tek bir tam sayı söyleyin, ek bir kelime ya da sembol kullanmayın.""" message = prompt # Get/format answer of the model model_answer = self.generate_response_sts_multi_token(message, max_new_tokens=2) responses.append(model_answer) model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper().replace(':','') # Check if correct based on metric if answer == model_answer_cleaned: true += 1 difficulty_results['correct'] += 1 difficulty_results['total'] += 1 # Print results stats = difficulty_results correct = stats['correct'] total = stats['total'] calculatedAccuracy = correct / total if total > 0 else 0 print(f"Accuracy: {calculatedAccuracy:.2%} ({correct}/{total})") print("Results:", responses) print("Overall Accuracy:", true / total_count) acc = accuracy(true, total_count) acc_stderr = accuracy_standard_error(acc, total_count) return {"acc": acc, "acc_stderr": acc_stderr}