from src.deepeval.base_task import BaseTask from collections import defaultdict from src.deepeval.utils import accuracy, accuracy_standard_error from typing import Any import ast class TopicDetectionTask(BaseTask): def __init__(self, model_name): super().__init__("metunlp/topic_detection_tr", model_name=model_name) def load_dataset_from_hf(self): dataset = super().load_dataset_from_hf() return dataset def evaluate(self) -> dict[str, Any]: responses = [] difficulty_results = defaultdict(lambda: {'correct': 0, 'total': 0}) total_count = 0 true = 0 for row in self.dataset: total_count += 1 # Get values from row choices = ast.literal_eval(row["choices"]) # Convert string to list formatted_choices = "\n".join([f"{chr(65+i)}: {choice}" for i, choice in enumerate(choices)]) category = row["level"].lower().replace(' ','') answer = row["answer"] text = row["text"] # Get answer index (starting from 0) if type(answer) == int: answer_index = answer else: answer_index = int(answer) correct_answer_letter = chr(65 + answer_index) # Construct the prompt/message instruction = "Aşağıdaki metni analiz et ve seçeneklerden bu metnin en olası kategorisini belirle. Temaya ve detaylara dikkat ederek metnin ana fikrini göz önünde bulundurarak soruyu cevapla." prompt = f"{instruction}\n\nMetin:\n{text}\nSeçenekler:\n{formatted_choices}\n\n" message = prompt # Get/format answer of the model model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) responses.append(model_answer) model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper().replace(':','') # Check if correct based on metric if correct_answer_letter == model_answer_cleaned: true += 1 difficulty_results[category]['correct'] += 1 difficulty_results[category]['total'] += 1 # Print results categorized by difficulty for category, stats in difficulty_results.items(): correct = stats['correct'] total = stats['total'] calculatedAccuracy = correct / total if total > 0 else 0 print(f"{category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({correct}/{total})") print("Results:", responses) print("Overall Accuracy:", true / total_count) acc = accuracy(true, total_count) acc_stderr = accuracy_standard_error(acc, total_count) return {"acc": acc, "acc_stderr": acc_stderr}