Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
from PIL import Image | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline | |
from diffusers.utils import load_image | |
import jax.numpy as jnp | |
import numpy as np | |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
"mfidabel/controlnet-segment-anything", dtype=jnp.float32 | |
) | |
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 | |
) | |
# Add ControlNet params and Replicate | |
params["controlnet"] = controlnet_params | |
p_params = replicate(params) | |
# Description | |
title = "# 🧨 ControlNet on Segment Anything 🤗" | |
description = "This is a demo on ControlNet based on Segment Anything" | |
examples = [["a modern main room of a house", "low quality", "condition_image_1.png", 50, 4, 4]] | |
# Inference Function | |
def infer(prompts, negative_prompts, image, num_inference_steps, seed, num_samples): | |
rng = jax.random.PRNGKey(int(seed)) | |
num_inference_steps = int(num_inference_steps) | |
image = Image.fromarray(image, mode="RGB") | |
num_samples = max(jax.device_count(), int(num_samples)) | |
p_rng = jax.random.split(rng, jax.device_count()) | |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
prompt_ids = shard(prompt_ids) | |
negative_prompt_ids = shard(negative_prompt_ids) | |
processed_image = shard(processed_image) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
image=processed_image, | |
params=p_params, | |
prng_seed=p_rng, | |
num_inference_steps=num_inference_steps, | |
neg_prompt_ids=negative_prompt_ids, | |
jit=True, | |
).images | |
output = output.reshape((num_samples,) + output.shape[-3:]) | |
print(output.shape) | |
final_image = [np.array(x*255, dtype=np.uint8) for x in output] | |
del output | |
return final_image | |
with gr.Blocks(css="h1 { text-align: center }") as demo: | |
# Title | |
gr.Markdown(title) | |
# Description | |
gr.Markdown(description) | |
# Images | |
with gr.Row(variant="panel"): | |
cond_img = gr.Image(label="Input")\ | |
.style(height=400) | |
output = gr.Gallery(label="Generated images")\ | |
.style(height="auto", rows=[2], columns=[1, 2]) | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(lines=1, label="Prompt") | |
negative_prompt = gr.Textbox(lines=1, label="Negative Prompt") | |
with gr.Column(): | |
with gr.Accordion("Advanced options", open=False): | |
num_steps = gr.Slider(10, 60, 50, step=1, label="Steps") | |
seed = gr.Slider(0, 1024, 0, step=1, label="Seed") | |
num_samples = gr.Slider(1, 4, 4, step=1, label="Nº Samples") | |
submit = gr.Button("Submit") | |
# Examples | |
gr.Examples(examples=examples, | |
inputs=[prompt, negative_prompt, cond_img, num_steps, seed, num_samples], | |
outputs=output, | |
fn=infer, | |
cache_examples=True) | |
submit.click(infer, | |
inputs=[prompt, negative_prompt, cond_img, num_steps, seed, num_samples], | |
outputs = output) | |
demo.queue() | |
demo.launch() |