import gradio as gr import jax from PIL import Image from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import load_image import jax.numpy as jnp import numpy as np controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "mfidabel/controlnet-segment-anything", dtype=jnp.float32 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 ) # Add ControlNet params and Replicate params["controlnet"] = controlnet_params p_params = replicate(params) # Description title = "# 🧨 ControlNet on Segment Anything 🤗" description = "This is a demo on ControlNet based on Segment Anything" examples = [["a modern main room of a house", "low quality", "condition_image_1.png", 50, 4, 4]] # Inference Function def infer(prompts, negative_prompts, image, num_inference_steps, seed, num_samples): rng = jax.random.PRNGKey(int(seed)) num_inference_steps = int(num_inference_steps) image = Image.fromarray(image, mode="RGB") num_samples = max(jax.device_count(), int(num_samples)) p_rng = jax.random.split(rng, jax.device_count()) prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) processed_image = pipe.prepare_image_inputs([image] * num_samples) prompt_ids = shard(prompt_ids) negative_prompt_ids = shard(negative_prompt_ids) processed_image = shard(processed_image) output = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=p_rng, num_inference_steps=num_inference_steps, neg_prompt_ids=negative_prompt_ids, jit=True, ).images output = output.reshape((num_samples,) + output.shape[-3:]) print(output.shape) final_image = [np.array(x*255, dtype=np.uint8) for x in output] del output return final_image with gr.Blocks(css="h1 { text-align: center }") as demo: # Title gr.Markdown(title) # Description gr.Markdown(description) # Images with gr.Row(variant="panel"): cond_img = gr.Image(label="Input")\ .style(height=400) output = gr.Gallery(label="Generated images")\ .style(height="auto", rows=[2], columns=[1, 2]) # Submit & Clear with gr.Row(): with gr.Column(): prompt = gr.Textbox(lines=1, label="Prompt") negative_prompt = gr.Textbox(lines=1, label="Negative Prompt") with gr.Column(): with gr.Accordion("Advanced options", open=False): num_steps = gr.Slider(10, 60, 50, step=1, label="Steps") seed = gr.Slider(0, 1024, 0, step=1, label="Seed") num_samples = gr.Slider(1, 4, 4, step=1, label="Nº Samples") submit = gr.Button("Submit") # Examples gr.Examples(examples=examples, inputs=[prompt, negative_prompt, cond_img, num_steps, seed, num_samples], outputs=output, fn=infer, cache_examples=True) submit.click(infer, inputs=[prompt, negative_prompt, cond_img, num_steps, seed, num_samples], outputs = output) demo.queue() demo.launch()