import nltk; nltk.download('wordnet')
#@title Load Model
selected_model = 'lookbook'
# Load model
import torch
import PIL
import numpy as np
import ipywidgets as widgets
from PIL import Image
import imageio
from models import get_instrumented_model
from decomposition import get_or_compute
from config import Config
from skimage import img_as_ubyte
import gradio as gr
import numpy as np
from ipywidgets import fixed
# Speed up computation
torch.autograd.set_grad_enabled(False)
torch.backends.cudnn.benchmark = True
# Specify model to use
config = Config(
model='StyleGAN2',
layer='style',
output_class=selected_model,
components=80,
use_w=True,
batch_size=5_000, # style layer quite small
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
inst = get_instrumented_model(config.model, config.output_class,
config.layer, torch.device(device), use_w=config.use_w)
path_to_components = get_or_compute(config, inst)
model = inst.model
comps = np.load(path_to_components)
lst = comps.files
latent_dirs = []
latent_stdevs = []
load_activations = False
for item in lst:
if load_activations:
if item == 'act_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'act_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
else:
if item == 'lat_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'lat_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
#@title Define functions
# Taken from https://github.com/alexanderkuk/log-progress
def log_progress(sequence, every=1, size=None, name='Items'):
from ipywidgets import IntProgress, HTML, VBox
from IPython.display import display
is_iterator = False
if size is None:
try:
size = len(sequence)
except TypeError:
is_iterator = True
if size is not None:
if every is None:
if size <= 200:
every = 1
else:
every = int(size / 200) # every 0.5%
else:
assert every is not None, 'sequence is iterator, set every'
if is_iterator:
progress = IntProgress(min=0, max=1, value=1)
progress.bar_style = 'info'
else:
progress = IntProgress(min=0, max=size, value=0)
label = HTML()
box = VBox(children=[label, progress])
display(box)
index = 0
try:
for index, record in enumerate(sequence, 1):
if index == 1 or index % every == 0:
if is_iterator:
label.value = '{name}: {index} / ?'.format(
name=name,
index=index
)
else:
progress.value = index
label.value = u'{name}: {index} / {size}'.format(
name=name,
index=index,
size=size
)
yield record
except:
progress.bar_style = 'danger'
raise
else:
progress.bar_style = 'success'
progress.value = index
label.value = "{name}: {index}".format(
name=name,
index=str(index or '?')
)
def name_direction(sender):
if not text.value:
print('Please name the direction before saving')
return
if num in named_directions.values():
target_key = list(named_directions.keys())[list(named_directions.values()).index(num)]
print(f'Direction already named: {target_key}')
print(f'Overwriting... ')
del(named_directions[target_key])
named_directions[text.value] = [num, start_layer.value, end_layer.value]
save_direction(random_dir, text.value)
for item in named_directions:
print(item, named_directions[item])
def save_direction(direction, filename):
filename += ".npy"
np.save(filename, direction, allow_pickle=True, fix_imports=True)
print(f'Latent direction saved as {filename}')
def mix_w(w1, w2, content, style):
for i in range(0,5):
w2[i] = w1[i] * (1 - content) + w2[i] * content
for i in range(5, 16):
w2[i] = w1[i] * (1 - style) + w2[i] * style
return w2
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
# blockPrint()
model.truncation = truncation
if w is None:
w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
w = [w]*model.get_max_latents() # one per layer
else:
w = [np.expand_dims(x, 0) for x in w]
for l in range(start, end):
for i in range(len(directions)):
w[l] = w[l] + directions[i] * distances[i] * scale
torch.cuda.empty_cache()
#save image and display
out = model.sample_np(w)
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
if save is not None:
if disp == False:
print(save)
final_im.save(f'out/{seed}_{save:05}.png')
if disp:
display(final_im)
return final_im
def generate_mov(seed, truncation, direction_vec, scale, layers, n_frames, out_name = 'out', noise_spec = None, loop=True):
"""Generates a mov moving back and forth along the chosen direction vector"""
# Example of reading a generated set of images, and storing as MP4.
movieName = f'{out_name}.mp4'
offset = -10
step = 20 / n_frames
imgs = []
for i in log_progress(range(n_frames), name = "Generating frames"):
print(f'\r{i} / {n_frames}', end='')
w = model.sample_latent(1, seed=seed).cpu().numpy()
model.truncation = truncation
w = [w]*model.get_max_latents() # one per layer
for l in layers:
if l <= model.get_max_latents():
w[l] = w[l] + direction_vec * offset * scale
#save image and display
out = model.sample_np(w)
final_im = Image.fromarray((out * 255).astype(np.uint8))
imgs.append(out)
#increase offset
offset += step
if loop:
imgs += imgs[::-1]
with imageio.get_writer(movieName, mode='I') as writer:
for image in log_progress(list(imgs), name = "Creating animation"):
writer.append_data(img_as_ubyte(image))
#@title Demo UI
def generate_image(seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer):
seed1 = int(seed1)
seed2 = int(seed2)
scale = 1
params = {'c0': c0,
'c1': c1,
'c2': c2,
'c3': c3,
'c4': c4,
'c5': c5,
'c6': c6}
param_indexes = {'c0': 0,
'c1': 1,
'c2': 2,
'c3': 3,
'c4': 4,
'c5': 5,
'c6': 6}
directions = []
distances = []
for k, v in params.items():
directions.append(latent_dirs[param_indexes[k]])
distances.append(v)
w1 = model.sample_latent(1, seed=seed1).detach().cpu().numpy()
w1 = [w1]*model.get_max_latents() # one per layer
im1 = model.sample_np(w1)
w2 = model.sample_latent(1, seed=seed2).detach().cpu().numpy()
w2 = [w2]*model.get_max_latents() # one per layer
im2 = model.sample_np(w2)
combined_im = np.concatenate([im1, im2], axis=1)
input_im = Image.fromarray((combined_im * 255).astype(np.uint8))
mixed_w = mix_w(w1, w2, content, style)
return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)
truncation = gr.inputs.Slider(minimum=0, maximum=1, default=0.5, label="Truncation")
start_layer = gr.inputs.Number(default=3, label="Start Layer")
end_layer = gr.inputs.Number(default=14, label="End Layer")
seed1 = gr.inputs.Number(default=0, label="Seed 1")
seed2 = gr.inputs.Number(default=0, label="Seed 2")
content = gr.inputs.Slider(label="Structure", minimum=0, maximum=1, default=0.5)
style = gr.inputs.Slider(label="Style", minimum=0, maximum=1, default=0.5)
slider_max_val = 20
slider_min_val = -20
slider_step = 1
c0 = gr.inputs.Slider(label="Sleeve & Size", minimum=slider_min_val, maximum=slider_max_val, default=0)
c1 = gr.inputs.Slider(label="Dress - Jacket", minimum=slider_min_val, maximum=slider_max_val, default=0)
c2 = gr.inputs.Slider(label="Female Coat", minimum=slider_min_val, maximum=slider_max_val, default=0)
c3 = gr.inputs.Slider(label="Coat", minimum=slider_min_val, maximum=slider_max_val, default=0)
c4 = gr.inputs.Slider(label="Graphics", minimum=slider_min_val, maximum=slider_max_val, default=0)
c5 = gr.inputs.Slider(label="Dark", minimum=slider_min_val, maximum=slider_max_val, default=0)
c6 = gr.inputs.Slider(label="Less Cleavage", minimum=slider_min_val, maximum=slider_max_val, default=0)
scale = 1
inputs = [seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer]
description = "Change the seed number to generate different parent design. Made by @mfrashad. For more details on how to build this, read the article or repo. Please give a clap/star if you find it useful :)"
gr.Interface(generate_image, inputs, ["image", "image"], description=description, live=True, title="ClothingGAN").launch()