Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,136 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import google.generativeai as genai
|
3 |
import chromadb
|
4 |
from chromadb.utils import embedding_functions
|
5 |
from PIL import Image
|
6 |
-
import os
|
7 |
import io
|
8 |
-
import time #
|
|
|
9 |
|
10 |
# --- Configuration ---
|
11 |
try:
|
12 |
-
#
|
13 |
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
|
14 |
genai.configure(api_key=GOOGLE_API_KEY)
|
15 |
except KeyError:
|
16 |
-
st.error("GOOGLE_API_KEY not found in
|
17 |
st.stop()
|
18 |
except Exception as e:
|
19 |
-
st.error(f"Error configuring Google AI: {e}")
|
20 |
st.stop()
|
21 |
|
22 |
# --- Gemini Model Setup ---
|
23 |
-
#
|
24 |
-
# for m in genai.list_models():
|
25 |
-
# if 'generateContent' in m.supported_generation_methods:
|
26 |
-
# print(m.name) # Find the vision model name (e.g., 'gemini-pro-vision')
|
27 |
-
|
28 |
VISION_MODEL_NAME = "gemini-pro-vision"
|
|
|
|
|
|
|
29 |
GENERATION_CONFIG = {
|
30 |
-
"temperature": 0.2,
|
31 |
"top_p": 0.95,
|
32 |
"top_k": 40,
|
33 |
"max_output_tokens": 1024,
|
34 |
}
|
35 |
-
|
|
|
|
|
|
|
36 |
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
37 |
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
38 |
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
39 |
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
40 |
]
|
41 |
|
|
|
42 |
try:
|
43 |
gemini_model = genai.GenerativeModel(
|
44 |
model_name=VISION_MODEL_NAME,
|
45 |
generation_config=GENERATION_CONFIG,
|
46 |
safety_settings=SAFETY_SETTINGS
|
47 |
)
|
|
|
48 |
except Exception as e:
|
49 |
-
st.error(f"Error initializing Gemini Model ({VISION_MODEL_NAME}): {e}")
|
50 |
st.stop()
|
51 |
|
52 |
# --- Chroma DB Setup ---
|
53 |
-
# Using persistent storage within the
|
54 |
-
#
|
|
|
55 |
CHROMA_PATH = "chroma_data"
|
56 |
COLLECTION_NAME = "medical_docs"
|
57 |
|
58 |
-
#
|
59 |
-
#
|
60 |
-
#
|
|
|
|
|
|
|
61 |
embedding_func = embedding_functions.DefaultEmbeddingFunction()
|
62 |
|
63 |
try:
|
|
|
64 |
chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
|
65 |
-
|
|
|
|
|
66 |
collection = chroma_client.get_or_create_collection(
|
67 |
name=COLLECTION_NAME,
|
68 |
embedding_function=embedding_func,
|
69 |
-
metadata={"hnsw:space": "cosine"} #
|
70 |
)
|
|
|
71 |
except Exception as e:
|
72 |
-
st.error(f"Error initializing Chroma DB at '{CHROMA_PATH}': {e}")
|
73 |
-
st.info("If this is the first run, the directory will be created.")
|
74 |
-
# Attempt creation again more robustly if needed, or guide user.
|
75 |
st.stop()
|
76 |
|
77 |
|
78 |
# --- Helper Functions ---
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
try:
|
82 |
img = Image.open(io.BytesIO(image_bytes))
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
94 |
response = gemini_model.generate_content([prompt, img])
|
95 |
-
# Handle potential blocked responses or errors
|
96 |
-
if not response.parts:
|
97 |
-
# Check if it was blocked
|
98 |
-
if response.prompt_feedback and response.prompt_feedback.block_reason:
|
99 |
-
return f"Analysis blocked: {response.prompt_feedback.block_reason}"
|
100 |
-
else:
|
101 |
-
# Some other issue, maybe no response text?
|
102 |
-
return "Error: Gemini analysis failed or returned no content."
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
return response.text
|
|
|
105 |
except genai.types.BlockedPromptException as e:
|
106 |
-
st.error(f"Gemini request blocked: {e}")
|
107 |
-
return f"Analysis blocked
|
108 |
except Exception as e:
|
109 |
-
st.error(f"
|
110 |
return f"Error analyzing image: {e}"
|
111 |
|
112 |
|
113 |
-
def query_chroma(query_text, n_results=5):
|
114 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
try:
|
116 |
results = collection.query(
|
117 |
query_texts=[query_text],
|
118 |
n_results=n_results,
|
119 |
-
include=['documents', 'metadatas', 'distances'] #
|
120 |
)
|
121 |
return results
|
122 |
except Exception as e:
|
123 |
-
st.error(f"Error querying Chroma DB: {e}")
|
124 |
return None
|
125 |
|
126 |
def add_dummy_data_to_chroma():
|
127 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
128 |
# --- IMPORTANT ---
|
129 |
-
# In a real
|
130 |
-
#
|
131 |
-
#
|
132 |
-
#
|
133 |
-
|
|
|
134 |
docs = [
|
135 |
"Figure 1A shows adenocarcinoma of the lung, papillary subtype. Note the glandular structures and nuclear atypia. TTF-1 staining was positive.",
|
136 |
"Pathology slide 34B demonstrates high-grade glioma (glioblastoma) with significant necrosis and microvascular proliferation. Ki-67 index was high.",
|
@@ -139,96 +196,127 @@ def add_dummy_data_to_chroma():
|
|
139 |
"Slide CJD-Sample-02: Spongiform changes characteristic of prion disease are evident in the cerebral cortex. Gliosis is also noted."
|
140 |
]
|
141 |
metadatas = [
|
142 |
-
{"source": "Example Paper 1", "entities": {"DISEASES": ["adenocarcinoma", "lung cancer"], "PATHOLOGY_FINDINGS": ["glandular structures", "nuclear atypia", "papillary subtype"], "BIOMARKERS": ["TTF-1"]}, "IMAGE_ID": "fig_1a_adeno_lung.png"},
|
143 |
-
{"source": "Path Report 789", "entities": {"DISEASES": ["high-grade glioma", "glioblastoma"], "PATHOLOGY_FINDINGS": ["necrosis", "microvascular proliferation"], "BIOMARKERS": ["Ki-67"]}, "IMAGE_ID": "slide_34b_gbm.tiff"},
|
144 |
-
{"source": "Textbook Chapter 5", "entities": {"GENES": ["EGFR"], "DRUGS": ["tyrosine kinase inhibitors"], "DISEASES": ["non-small cell lung cancer"]}, "IMAGE_ID": "diagram_egfr_pathway.svg"},
|
145 |
-
{"source": "Path Report 101", "entities": {"DISEASES": ["chronic gastritis", "Helicobacter pylori infection"], "PATHOLOGY_FINDINGS": ["intestinal metaplasia"]}, "IMAGE_ID": "micrograph_h_pylori_gastritis.jpg"},
|
146 |
-
{"source": "Case Study CJD", "entities": {"DISEASES": ["prion disease"], "PATHOLOGY_FINDINGS": ["Spongiform changes", "Gliosis"], "ANATOMICAL_LOCATIONS": ["cerebral cortex"]}, "IMAGE_ID": "slide_cjd_sample_02.jpg"}
|
147 |
]
|
148 |
-
|
|
|
149 |
|
150 |
try:
|
151 |
-
# Check if
|
152 |
-
|
153 |
-
if not
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
else:
|
161 |
-
|
162 |
|
163 |
except Exception as e:
|
164 |
-
st.error(f"Error adding dummy data to Chroma: {e}")
|
165 |
|
166 |
|
167 |
# --- Streamlit UI ---
|
168 |
-
st.set_page_config(layout="wide")
|
169 |
st.title("⚕️ Medical Image Analysis & RAG")
|
170 |
-
st.markdown("
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
# Sidebar for
|
173 |
with st.sidebar:
|
174 |
-
st.header("Controls")
|
175 |
-
uploaded_file = st.file_uploader(
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
add_dummy_data_to_chroma()
|
178 |
-
st.info("Note: Chroma data persists in the Space's storage but is lost if the Space is reset/deleted.")
|
179 |
|
|
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
185 |
|
186 |
-
# Display the uploaded image
|
187 |
-
st.image(image_bytes, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=False, width=400)
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
st.subheader("🔬 Gemini Vision Analysis")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
if analysis_text.startswith("Error:") or analysis_text.startswith("Analysis blocked:"):
|
197 |
-
st.error(analysis_text)
|
198 |
else:
|
199 |
-
st.
|
200 |
-
|
201 |
-
st.markdown("---")
|
202 |
-
st.subheader("📚 Related Information from Knowledge Base (Chroma DB)")
|
203 |
-
|
204 |
-
# Query Chroma DB using the Gemini analysis text
|
205 |
-
with st.spinner("Querying Chroma DB..."):
|
206 |
-
chroma_results = query_chroma(analysis_text)
|
207 |
-
|
208 |
-
if chroma_results and chroma_results.get('documents') and chroma_results['documents'][0]:
|
209 |
-
st.success(f"Found {len(chroma_results['documents'][0])} related entries:")
|
210 |
-
for i in range(len(chroma_results['documents'][0])):
|
211 |
-
doc = chroma_results['documents'][0][i]
|
212 |
-
meta = chroma_results['metadatas'][0][i]
|
213 |
-
dist = chroma_results['distances'][0][i]
|
214 |
-
|
215 |
-
with st.expander(f"Result {i+1} (Distance: {dist:.4f}) - Source: {meta.get('source', 'N/A')}"):
|
216 |
-
st.markdown("**Text:**")
|
217 |
-
st.markdown(doc)
|
218 |
-
st.markdown("**Metadata:**")
|
219 |
-
st.json(meta) # Display all metadata nicely
|
220 |
-
|
221 |
-
# Highlight if it references another image
|
222 |
-
if meta.get("IMAGE_ID"):
|
223 |
-
st.info(f"ℹ️ This text describes another visual asset: `{meta['IMAGE_ID']}`")
|
224 |
-
# In a real app, you might fetch/display this image if available
|
225 |
-
elif chroma_results is not None: # Query ran but found nothing
|
226 |
-
st.warning("No relevant information found in the knowledge base for this analysis.")
|
227 |
-
else: # Error occurred during query
|
228 |
-
st.error("Failed to retrieve results from Chroma DB.")
|
229 |
-
|
230 |
-
else:
|
231 |
-
st.info("Upload an image using the sidebar to start the analysis.")
|
232 |
|
233 |
st.markdown("---")
|
234 |
-
st.markdown("Powered by Google Gemini, Chroma DB, and Streamlit
|
|
|
1 |
+
# --- Docstring ---
|
2 |
+
"""
|
3 |
+
Streamlit application for Medical Image Analysis using Google Gemini Vision
|
4 |
+
and Retrieval-Augmented Generation (RAG) with Chroma DB.
|
5 |
+
|
6 |
+
Allows users to upload a medical image (pathology slide, diagram, etc.).
|
7 |
+
1. The image is analyzed by Google's Gemini Pro Vision model to generate a
|
8 |
+
textual description of key features.
|
9 |
+
2. This description is then used as a query to a Chroma vector database
|
10 |
+
(populated with example medical text snippets) to retrieve relevant
|
11 |
+
information from a simulated knowledge base.
|
12 |
+
"""
|
13 |
+
|
14 |
+
# --- Imports ---
|
15 |
import streamlit as st
|
16 |
import google.generativeai as genai
|
17 |
import chromadb
|
18 |
from chromadb.utils import embedding_functions
|
19 |
from PIL import Image
|
|
|
20 |
import io
|
21 |
+
import time # Used for generating unique IDs for Chroma DB demo data
|
22 |
+
from typing import Optional, Dict, List, Any # For type hinting
|
23 |
|
24 |
# --- Configuration ---
|
25 |
try:
|
26 |
+
# Attempt to load the Google API key from Streamlit secrets
|
27 |
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
|
28 |
genai.configure(api_key=GOOGLE_API_KEY)
|
29 |
except KeyError:
|
30 |
+
st.error("❌ GOOGLE_API_KEY not found in Streamlit secrets! Please add it.")
|
31 |
st.stop()
|
32 |
except Exception as e:
|
33 |
+
st.error(f"❌ Error configuring Google AI SDK: {e}")
|
34 |
st.stop()
|
35 |
|
36 |
# --- Gemini Model Setup ---
|
37 |
+
# Define the specific Gemini model to use (ensure it's a vision-capable model)
|
|
|
|
|
|
|
|
|
38 |
VISION_MODEL_NAME = "gemini-pro-vision"
|
39 |
+
|
40 |
+
# Configure generation parameters for the model
|
41 |
+
# Lower temperature for more deterministic, factual descriptions
|
42 |
GENERATION_CONFIG = {
|
43 |
+
"temperature": 0.2,
|
44 |
"top_p": 0.95,
|
45 |
"top_k": 40,
|
46 |
"max_output_tokens": 1024,
|
47 |
}
|
48 |
+
|
49 |
+
# Configure safety settings (adjust thresholds as needed for medical content)
|
50 |
+
# Blocking potentially sensitive content might be necessary depending on the images
|
51 |
+
SAFETY_SETTINGS = [
|
52 |
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
53 |
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
54 |
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
55 |
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
56 |
]
|
57 |
|
58 |
+
# Initialize the Gemini Generative Model
|
59 |
try:
|
60 |
gemini_model = genai.GenerativeModel(
|
61 |
model_name=VISION_MODEL_NAME,
|
62 |
generation_config=GENERATION_CONFIG,
|
63 |
safety_settings=SAFETY_SETTINGS
|
64 |
)
|
65 |
+
st.success(f"✅ Initialized Gemini Model: {VISION_MODEL_NAME}")
|
66 |
except Exception as e:
|
67 |
+
st.error(f"❌ Error initializing Gemini Model ({VISION_MODEL_NAME}): {e}")
|
68 |
st.stop()
|
69 |
|
70 |
# --- Chroma DB Setup ---
|
71 |
+
# Using persistent storage within the Streamlit deployment environment (e.g., HF Space)
|
72 |
+
# NOTE: Data will be lost if the persistent storage is wiped or the environment resets.
|
73 |
+
# For production, consider a managed Chroma instance or alternative database.
|
74 |
CHROMA_PATH = "chroma_data"
|
75 |
COLLECTION_NAME = "medical_docs"
|
76 |
|
77 |
+
# Define the embedding function.
|
78 |
+
# Using a default Sentence Transformer model (runs locally on CPU).
|
79 |
+
# IMPORTANT: The embedding model used for querying MUST match the one used
|
80 |
+
# when initially adding data to the collection.
|
81 |
+
# For improved performance/relevance on medical text, consider fine-tuned
|
82 |
+
# medical domain-specific embedding models if available.
|
83 |
embedding_func = embedding_functions.DefaultEmbeddingFunction()
|
84 |
|
85 |
try:
|
86 |
+
# Initialize Chroma DB client with persistence
|
87 |
chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
|
88 |
+
|
89 |
+
# Get or create the collection, specifying the embedding function and distance metric
|
90 |
+
# Using cosine distance is common for text similarity tasks.
|
91 |
collection = chroma_client.get_or_create_collection(
|
92 |
name=COLLECTION_NAME,
|
93 |
embedding_function=embedding_func,
|
94 |
+
metadata={"hnsw:space": "cosine"} # Specify cosine distance metric
|
95 |
)
|
96 |
+
st.success(f"✅ Chroma DB collection '{COLLECTION_NAME}' loaded/created at '{CHROMA_PATH}'.")
|
97 |
except Exception as e:
|
98 |
+
st.error(f"❌ Error initializing Chroma DB at '{CHROMA_PATH}': {e}")
|
99 |
+
st.info("ℹ️ If this is the first run, the 'chroma_data' directory will be created.")
|
|
|
100 |
st.stop()
|
101 |
|
102 |
|
103 |
# --- Helper Functions ---
|
104 |
+
|
105 |
+
def analyze_image_with_gemini(image_bytes: bytes) -> str:
|
106 |
+
"""
|
107 |
+
Sends image bytes to the Gemini Vision model for analysis and returns
|
108 |
+
the generated text description.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
image_bytes: The image data as bytes.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
A string containing the analysis text, or an error/blocked message.
|
115 |
+
"""
|
116 |
try:
|
117 |
img = Image.open(io.BytesIO(image_bytes))
|
118 |
+
# Define the prompt for the vision model
|
119 |
+
prompt = """Analyze this medical image (e.g., pathology slide, diagram, scan).
|
120 |
+
Describe the key visual features relevant to a medical context.
|
121 |
+
Identify potential:
|
122 |
+
- Diseases or conditions indicated
|
123 |
+
- Pathological findings (e.g., cellular morphology, tissue structure, staining patterns)
|
124 |
+
- Visible cell types
|
125 |
+
- Relevant biomarkers (if inferable from staining or morphology)
|
126 |
+
- Anatomical context (if discernible)
|
127 |
+
|
128 |
+
Be concise and focus primarily on visually evident information. Avoid definitive diagnoses.
|
129 |
+
"""
|
130 |
+
# Generate content using the model
|
131 |
response = gemini_model.generate_content([prompt, img])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
# Check for blocked content or empty response
|
134 |
+
if not response.parts:
|
135 |
+
if response.prompt_feedback and response.prompt_feedback.block_reason:
|
136 |
+
block_reason = response.prompt_feedback.block_reason
|
137 |
+
st.warning(f"⚠️ Analysis blocked by safety settings: {block_reason}")
|
138 |
+
return f"Analysis blocked due to safety settings: {block_reason}"
|
139 |
+
else:
|
140 |
+
st.error("❌ Gemini analysis returned no content. Response might be empty or invalid.")
|
141 |
+
return "Error: Gemini analysis failed or returned no content."
|
142 |
+
|
143 |
+
# Return the generated text
|
144 |
return response.text
|
145 |
+
|
146 |
except genai.types.BlockedPromptException as e:
|
147 |
+
st.error(f"❌ Gemini request blocked due to prompt content: {e}")
|
148 |
+
return f"Analysis blocked (prompt issue): {e}"
|
149 |
except Exception as e:
|
150 |
+
st.error(f"❌ An error occurred during Gemini analysis: {e}")
|
151 |
return f"Error analyzing image: {e}"
|
152 |
|
153 |
|
154 |
+
def query_chroma(query_text: str, n_results: int = 5) -> Optional[Dict[str, List[Any]]]:
|
155 |
+
"""
|
156 |
+
Queries the Chroma DB collection with the given text.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
query_text: The text to use for the similarity search.
|
160 |
+
n_results: The maximum number of results to return.
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
A dictionary containing the query results ('documents', 'metadatas',
|
164 |
+
'distances'), or None if an error occurs.
|
165 |
+
"""
|
166 |
try:
|
167 |
results = collection.query(
|
168 |
query_texts=[query_text],
|
169 |
n_results=n_results,
|
170 |
+
include=['documents', 'metadatas', 'distances'] # Specify fields to include
|
171 |
)
|
172 |
return results
|
173 |
except Exception as e:
|
174 |
+
st.error(f"❌ Error querying Chroma DB: {e}")
|
175 |
return None
|
176 |
|
177 |
def add_dummy_data_to_chroma():
|
178 |
+
"""
|
179 |
+
Adds predefined example medical text snippets and metadata to the Chroma collection.
|
180 |
+
Checks if documents with the same text already exist before adding.
|
181 |
+
"""
|
182 |
+
st.info("Attempting to add dummy data to Chroma DB...")
|
183 |
+
|
184 |
# --- IMPORTANT ---
|
185 |
+
# In a real application, this data ingestion process would involve:
|
186 |
+
# 1. Parsing actual medical documents (research papers, clinical notes, textbooks).
|
187 |
+
# 2. Extracting relevant text chunks (e.g., using tools like Unstructured).
|
188 |
+
# 3. Extracting or associating meaningful METADATA (source, patient ID (anonymized),
|
189 |
+
# image IDs linked to text, extracted entities like diseases/genes).
|
190 |
+
# 4. Generating embeddings using the SAME embedding function used for querying.
|
191 |
docs = [
|
192 |
"Figure 1A shows adenocarcinoma of the lung, papillary subtype. Note the glandular structures and nuclear atypia. TTF-1 staining was positive.",
|
193 |
"Pathology slide 34B demonstrates high-grade glioma (glioblastoma) with significant necrosis and microvascular proliferation. Ki-67 index was high.",
|
|
|
196 |
"Slide CJD-Sample-02: Spongiform changes characteristic of prion disease are evident in the cerebral cortex. Gliosis is also noted."
|
197 |
]
|
198 |
metadatas = [
|
199 |
+
{"source": "Example Paper 1", "topic": "Lung Cancer Pathology", "entities": {"DISEASES": ["adenocarcinoma", "lung cancer"], "PATHOLOGY_FINDINGS": ["glandular structures", "nuclear atypia", "papillary subtype"], "BIOMARKERS": ["TTF-1"]}, "IMAGE_ID": "fig_1a_adeno_lung.png"},
|
200 |
+
{"source": "Path Report 789", "topic": "Brain Tumor Pathology", "entities": {"DISEASES": ["high-grade glioma", "glioblastoma"], "PATHOLOGY_FINDINGS": ["necrosis", "microvascular proliferation"], "BIOMARKERS": ["Ki-67"]}, "IMAGE_ID": "slide_34b_gbm.tiff"},
|
201 |
+
{"source": "Textbook Chapter 5", "topic": "Molecular Oncology Pathways", "entities": {"GENES": ["EGFR"], "DRUGS": ["tyrosine kinase inhibitors"], "DISEASES": ["non-small cell lung cancer"]}, "IMAGE_ID": "diagram_egfr_pathway.svg"},
|
202 |
+
{"source": "Path Report 101", "topic": "Gastrointestinal Pathology", "entities": {"DISEASES": ["chronic gastritis", "Helicobacter pylori infection"], "PATHOLOGY_FINDINGS": ["intestinal metaplasia"]}, "IMAGE_ID": "micrograph_h_pylori_gastritis.jpg"},
|
203 |
+
{"source": "Case Study CJD", "topic": "Neuropathology", "entities": {"DISEASES": ["prion disease"], "PATHOLOGY_FINDINGS": ["Spongiform changes", "Gliosis"], "ANATOMICAL_LOCATIONS": ["cerebral cortex"]}, "IMAGE_ID": "slide_cjd_sample_02.jpg"}
|
204 |
]
|
205 |
+
# Generate unique IDs using timestamp + index to minimize collision chance in demo
|
206 |
+
ids = [f"doc_{int(time.time())}_{i}" for i in range(len(docs))]
|
207 |
|
208 |
try:
|
209 |
+
# Check if documents with these exact texts already exist to avoid duplicates
|
210 |
+
existing_docs = collection.get(where={"$or": [{"document": doc} for doc in docs]}, include=[]) # Don't need full data, just check existence
|
211 |
+
if not existing_docs or not existing_docs.get('ids'):
|
212 |
+
collection.add(
|
213 |
+
documents=docs,
|
214 |
+
metadatas=metadatas,
|
215 |
+
ids=ids
|
216 |
+
)
|
217 |
+
st.success(f"✅ Added {len(docs)} dummy documents to Chroma collection '{COLLECTION_NAME}'.")
|
218 |
else:
|
219 |
+
st.warning("⚠️ Dummy data (based on document text) seems to already exist in the collection. No new data added.")
|
220 |
|
221 |
except Exception as e:
|
222 |
+
st.error(f"❌ Error adding dummy data to Chroma: {e}")
|
223 |
|
224 |
|
225 |
# --- Streamlit UI ---
|
226 |
+
st.set_page_config(layout="wide", page_title="Medical Image Analysis & RAG")
|
227 |
st.title("⚕️ Medical Image Analysis & RAG")
|
228 |
+
st.markdown("""
|
229 |
+
Upload a medical image (e.g., pathology slide, diagram).
|
230 |
+
Google Gemini Vision will analyze it, and Chroma DB will retrieve related text snippets
|
231 |
+
from a simulated knowledge base based on the analysis.
|
232 |
+
""")
|
233 |
|
234 |
+
# Sidebar for Controls
|
235 |
with st.sidebar:
|
236 |
+
st.header("⚙️ Controls")
|
237 |
+
uploaded_file = st.file_uploader(
|
238 |
+
"Choose an image...",
|
239 |
+
type=["jpg", "jpeg", "png", "tiff", "webp"],
|
240 |
+
help="Upload a medical image file."
|
241 |
+
)
|
242 |
+
|
243 |
+
st.divider() # Visual separator
|
244 |
+
|
245 |
+
if st.button("➕ Load Dummy KB Data", help="Add example text data to the Chroma vector database."):
|
246 |
add_dummy_data_to_chroma()
|
|
|
247 |
|
248 |
+
st.divider()
|
249 |
|
250 |
+
st.info(f"""
|
251 |
+
ℹ️ **Note:**
|
252 |
+
- Chroma data is stored in the '{CHROMA_PATH}' folder within the app's environment.
|
253 |
+
- This data persists across runs but **will be lost** if the hosting environment (e.g., Streamlit Cloud, Hugging Face Space) is reset or its storage is cleared.
|
254 |
+
- Ensure the Google API Key is set in Streamlit Secrets.
|
255 |
+
""")
|
256 |
|
|
|
|
|
257 |
|
258 |
+
# Main Display Area
|
259 |
+
col1, col2 = st.columns(2) # Create two columns for layout
|
260 |
+
|
261 |
+
with col1:
|
262 |
+
st.subheader("🖼️ Uploaded Image")
|
263 |
+
if uploaded_file is not None:
|
264 |
+
# Read image bytes from the uploaded file
|
265 |
+
image_bytes = uploaded_file.getvalue()
|
266 |
+
# Display the uploaded image
|
267 |
+
st.image(image_bytes, caption=f"Uploaded: {uploaded_file.name}", use_column_width=True)
|
268 |
+
else:
|
269 |
+
st.info("Upload an image using the sidebar to begin.")
|
270 |
+
|
271 |
+
with col2:
|
272 |
st.subheader("🔬 Gemini Vision Analysis")
|
273 |
+
if uploaded_file is not None:
|
274 |
+
# Analyze image with Gemini when an image is uploaded
|
275 |
+
with st.spinner("🧠 Analyzing image with Gemini Vision... This may take a moment."):
|
276 |
+
analysis_text = analyze_image_with_gemini(image_bytes)
|
277 |
+
|
278 |
+
# Display analysis or error message
|
279 |
+
if analysis_text.startswith("Error:") or analysis_text.startswith("Analysis blocked"):
|
280 |
+
# Errors/blocks are already logged via st.error/st.warning in the helper function
|
281 |
+
st.markdown(f"**Analysis Status:** {analysis_text}") # Show status message
|
282 |
+
else:
|
283 |
+
st.markdown(analysis_text)
|
284 |
+
|
285 |
+
st.markdown("---") # Separator before RAG results
|
286 |
+
st.subheader("📚 Related Information (RAG via Chroma DB)")
|
287 |
|
288 |
+
# Query Chroma DB using the Gemini analysis text
|
289 |
+
with st.spinner("🔍 Searching knowledge base..."):
|
290 |
+
chroma_results = query_chroma(analysis_text, n_results=3) # Fetch top 3 results
|
291 |
+
|
292 |
+
if chroma_results and chroma_results.get('documents') and chroma_results['documents'][0]:
|
293 |
+
num_results = len(chroma_results['documents'][0])
|
294 |
+
st.success(f"✅ Found {num_results} related entries in the knowledge base:")
|
295 |
+
|
296 |
+
for i in range(num_results):
|
297 |
+
doc = chroma_results['documents'][0][i]
|
298 |
+
meta = chroma_results['metadatas'][0][i]
|
299 |
+
dist = chroma_results['distances'][0][i]
|
300 |
+
|
301 |
+
expander_title = f"Result {i+1} (Similarity Score: {1-dist:.4f}) - Source: {meta.get('source', 'N/A')}"
|
302 |
+
with st.expander(expander_title):
|
303 |
+
st.markdown("**Retrieved Text:**")
|
304 |
+
st.markdown(f"> {doc}") # Use blockquote for text
|
305 |
+
st.markdown("**Metadata:**")
|
306 |
+
st.json(meta) # Display metadata nicely formatted
|
307 |
+
|
308 |
+
# Highlight if the retrieved text references another image/asset
|
309 |
+
if meta.get("IMAGE_ID"):
|
310 |
+
st.info(f"ℹ️ This text chunk is associated with visual asset: `{meta['IMAGE_ID']}`")
|
311 |
+
# In a more complex app, you could add logic here to fetch/display this related image if available.
|
312 |
+
|
313 |
+
elif chroma_results is not None: # Query ran successfully but found nothing
|
314 |
+
st.warning("⚠️ No relevant information found in the knowledge base matching the image analysis.")
|
315 |
+
# Else case (chroma_results is None) implies an error occurred, handled by st.error in query_chroma
|
316 |
|
|
|
|
|
317 |
else:
|
318 |
+
st.info("Analysis will appear here once an image is uploaded.")
|
319 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
st.markdown("---")
|
322 |
+
st.markdown("<div style='text-align: center;'>Powered by Google Gemini, Chroma DB, and Streamlit</div>", unsafe_allow_html=True)
|