mgbam commited on
Commit
10922c3
·
verified ·
1 Parent(s): df481b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +351 -296
app.py CHANGED
@@ -1,180 +1,224 @@
1
  import streamlit as st
2
- from PIL import Image, ImageDraw, ImageFont
3
  import io
4
  import time
5
  import os
6
- import random # For simulating variations
 
 
 
7
 
8
  # ------------------------------------------------------------------------------
9
  # Page Configuration
10
  # ------------------------------------------------------------------------------
11
  st.set_page_config(
12
- page_title="AI Real Estate Visualization Suite",
13
  layout="wide",
14
- page_icon="💎",
15
  initial_sidebar_state="expanded"
16
  )
17
 
18
  # ------------------------------------------------------------------------------
19
- # Advanced Placeholder for AI Model Call
20
  # ------------------------------------------------------------------------------
21
- # This function now accepts many more parameters to simulate advanced control.
22
- # In reality, this would likely involve multiple specialized AI models or a very
23
- # complex multi-modal model API.
24
-
25
- def run_advanced_ai_model(
26
- input_data, # Could be PIL Image, or bytes for other formats
27
- input_type: str, # 'image', 'floorplan', '3dmodel'
28
- output_mode: str, # 'staging', 'renovation', 'material_swap', 'layout_variation'
29
- room_type: str,
30
- style: str,
31
- furniture_prefs: str = "",
32
- materials: dict = {}, # e.g., {'wall_color': '#FFFFFF', 'floor_type': 'Oak Wood'}
33
- lighting_time: float = 0.5, # 0.0 (dawn) to 1.0 (dusk)
34
- camera_angle: str = "Eye-Level",
35
- remove_objects: bool = False,
36
- renovation_instructions: str = "" # e.g., "Remove wall between kitchen and living room"
37
- ) -> Image.Image:
38
  """
39
- Advanced placeholder simulating a sophisticated AI visualization model.
 
 
 
 
 
 
 
40
  """
41
- st.info(f"Simulating Advanced AI: Mode='{output_mode}', Style='{style}'...")
42
- print(f"--- ADVANCED AI SIMULATION ---")
43
- print(f"Input Type: {input_type}")
44
- print(f"Output Mode: {output_mode}")
45
- print(f"Room Type: {room_type}")
46
- print(f"Style: {style}")
47
- print(f"Furniture Prefs: {furniture_prefs if furniture_prefs else 'N/A'}")
48
- print(f"Materials: {materials}")
49
- print(f"Lighting Time (0-1): {lighting_time:.2f}")
50
- print(f"Camera Angle: {camera_angle}")
51
- print(f"Remove Existing Objects: {remove_objects}")
52
- print(f"Renovation Instructions: {renovation_instructions if renovation_instructions else 'N/A'}")
53
- print(f"-----------------------------")
54
-
55
- # Simulate processing time based on complexity
56
- processing_time = 3 + len(furniture_prefs) * 0.01 + len(materials) * 0.5
57
- if output_mode == 'renovation': processing_time += 2
58
- time.sleep(min(processing_time, 8)) # Cap simulation time
59
-
60
- # --- Simulation Logic ---
61
- # Determine the placeholder image based on mode
62
- base_placeholder = "assets/staged_result_placeholder.png"
63
- if output_mode == 'renovation':
64
- base_placeholder = "assets/renovation_placeholder.png" # Need another dummy image
65
- elif output_mode == 'material_swap':
66
- base_placeholder = "assets/material_swap_placeholder.png" # Need another dummy image
67
- elif output_mode == 'layout_variation':
68
- base_placeholder = f"assets/layout_{random.randint(1,2)}_placeholder.png" # Need layout_1/2 dummies
69
-
70
- if isinstance(input_data, Image.Image):
71
- base_image = input_data # Use original if input was image
72
  else:
73
- base_image = None # Cannot use non-image input directly for overlay
 
 
74
 
75
- # Try loading the specific placeholder
76
- staged_image = None
77
- if os.path.exists(base_placeholder):
78
- try:
79
- staged_image = Image.open(base_placeholder).convert("RGB")
80
- print(f"SIMULATING AI: Loaded placeholder: {base_placeholder}")
81
- except Exception as e:
82
- print(f"Error loading placeholder '{base_placeholder}': {e}")
83
- staged_image = None
84
-
85
- # Fallback if placeholder failed or input wasn't an image for overlay
86
- if staged_image is None:
87
- if base_image:
88
- staged_image = base_image.copy()
89
- print("SIMULATING AI: Placeholder failed, using copy of original image.")
90
- else:
91
- # Create a generic image if no input image and placeholder failed
92
- staged_image = Image.new('RGB', (800, 600), color = (200, 200, 200))
93
- print("SIMULATING AI: Placeholder failed and no base image, using blank canvas.")
94
-
95
- # Add text overlay summarizing the simulation
96
- draw = ImageDraw.Draw(staged_image)
97
- try:
98
- font_path = "arial.ttf" # Check system fonts or provide path
99
- font_size = 20
100
- font = ImageFont.truetype(font_path, font_size)
101
- except IOError:
102
- font = ImageFont.load_default()
103
-
104
- text_lines = [
105
- f"AI Sim Result: {output_mode.replace('_', ' ').title()}",
106
- f"Style: {style}, Room: {room_type}",
107
- f"Lighting: {lighting_time:.2f}, Camera: {camera_angle}",
108
- ]
109
- if furniture_prefs: text_lines.append(f"Prefs: {furniture_prefs[:30]}...")
110
- if materials.get('wall_color'): text_lines.append(f"Wall: {materials['wall_color']}")
111
- if materials.get('floor_type'): text_lines.append(f"Floor: {materials['floor_type']}")
112
- if remove_objects: text_lines.append(f"[Removed Objects]")
113
- if renovation_instructions: text_lines.append(f"Reno: {renovation_instructions[:30]}...")
114
-
115
- y_pos = 10
116
- for line in text_lines:
117
- try:
118
- # Simple background box
119
- text_bbox = draw.textbbox((10, y_pos), line, font=font)
120
- # Add padding to bbox
121
- padded_bbox = (text_bbox[0]-2, text_bbox[1]-2, text_bbox[2]+2, text_bbox[3]+2)
122
- draw.rectangle(padded_bbox, fill="rgba(0, 0, 0, 0.6)")
123
- draw.text((10, y_pos), line, fill="white", font=font)
124
- y_pos += font_size + 4 # Move down for next line
125
- except Exception as draw_err:
126
- print(f"Error drawing text overlay: {draw_err}") # Log error but continue
127
 
128
- print("SIMULATING AI: Processing complete.")
129
- st.success(f"Advanced AI Simulation for '{output_mode}' Complete!")
130
- return staged_image
131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
  # ------------------------------------------------------------------------------
134
- # Initialize Session State
135
  # ------------------------------------------------------------------------------
136
- if 'input_data' not in st.session_state:
137
- st.session_state.input_data = None # Can hold PIL Image or bytes
138
- if 'input_type' not in st.session_state:
139
- st.session_state.input_type = None # 'image', 'floorplan', '3dmodel'
140
- if 'ai_result_image' not in st.session_state:
141
- st.session_state.ai_result_image = None
142
- if 'uploaded_filename' not in st.session_state:
143
- st.session_state.uploaded_filename = None
144
- if 'last_run_params' not in st.session_state: # Store params used for the run
145
- st.session_state.last_run_params = {}
 
 
 
 
 
 
 
 
146
 
147
  # ------------------------------------------------------------------------------
148
- # Helper Functions
149
  # ------------------------------------------------------------------------------
150
- def display_input_placeholder(input_type, filename):
151
- """Shows appropriate info for non-image inputs."""
152
- if input_type == 'floorplan':
153
- st.info(f"Floor Plan File Loaded: **{filename}**\n\n*(Rendering from floor plans is simulated)*")
154
- # In a real app, you might use a library like `ezdxf` to show a basic plot
155
- elif input_type == '3dmodel':
156
- st.info(f"3D Model File Loaded: **{filename}**\n\n*(Rendering from 3D models is simulated)*")
157
- # In a real app, you might use `pyvista` or `trimesh` for basic viewing
158
- else:
159
- st.warning("Unsupported input type for display.")
 
 
 
 
 
 
 
 
 
 
160
 
161
  # ------------------------------------------------------------------------------
162
- # Main Application UI
163
  # ------------------------------------------------------------------------------
164
- st.title("💎 Advanced AI Real Estate Visualization Suite")
165
- st.caption("Simulating cutting-edge AI for staging, renovation previews, material swaps, and more.")
 
 
 
 
 
 
 
166
  st.markdown("---")
167
 
168
  # --- Sidebar ---
169
  with st.sidebar:
170
  st.header("⚙️ Input & Configuration")
 
 
 
 
 
 
 
 
 
 
 
171
 
172
  input_file = st.file_uploader(
173
  "1. Upload File",
174
- type=["png", "jpg", "jpeg", "webp", "dxf", "dwg", "obj", "fbx"], # Accept more types
175
  key="file_uploader",
176
  accept_multiple_files=False,
177
- help="Upload Room Image (JPG, PNG), Floor Plan (DXF - simulated), or 3D Model (OBJ - simulated)."
 
178
  )
179
 
180
  # --- Input Processing ---
@@ -184,203 +228,214 @@ with st.sidebar:
184
  file_ext = os.path.splitext(input_file.name)[1].lower()
185
  file_bytes = input_file.getvalue()
186
  processed = False
 
187
 
188
- # Image Input
189
- if file_ext in ['.png', '.jpg', '.jpeg', '.webp']:
190
- try:
191
  image = Image.open(io.BytesIO(file_bytes)).convert("RGB")
192
- max_size = (1024, 1024) # Resize for consistency
193
  image.thumbnail(max_size, Image.Resampling.LANCZOS)
194
- st.session_state.input_data = image
195
- st.session_state.input_type = 'image'
196
  processed = True
197
- except Exception as e: st.error(f"Error loading image: {e}")
198
- # Floor Plan Input (Simulated)
199
- elif file_ext in ['.dxf', '.dwg']:
200
- st.session_state.input_data = file_bytes # Store bytes
201
- st.session_state.input_type = 'floorplan'
202
- processed = True
203
- st.warning("Floor plan processing is simulated.")
204
- # 3D Model Input (Simulated)
205
- elif file_ext in ['.obj', '.fbx']:
206
- st.session_state.input_data = file_bytes # Store bytes
207
- st.session_state.input_type = '3dmodel'
208
- processed = True
209
- st.warning("3D model processing is simulated.")
210
- else:
211
- st.error(f"Unsupported file type: {file_ext}")
212
-
213
- # Update state if processed successfully
214
- if processed:
215
- st.session_state.ai_result_image = None # Reset result
216
- st.session_state.uploaded_filename = input_file.name
217
- st.session_state.last_run_params = {} # Clear old params
218
- st.success(f"File '{input_file.name}' ({st.session_state.input_type}) loaded.")
219
- else:
220
- st.session_state.input_data = None
 
 
 
 
 
 
 
 
 
 
 
221
  st.session_state.input_type = None
222
  st.session_state.uploaded_filename = None
223
 
224
- elif st.session_state.uploaded_filename: # File was removed by user
225
- st.session_state.input_data = None
226
- st.session_state.input_type = None
227
- st.session_state.ai_result_image = None
228
- st.session_state.uploaded_filename = None
229
- st.session_state.last_run_params = {}
230
-
231
 
232
- # --- Configuration Options (Only if input is loaded) ---
233
- if st.session_state.input_data is not None:
234
  st.markdown("---")
235
  st.subheader("2. Visualization Mode")
236
  output_mode = st.selectbox(
237
  "Select Mode:",
238
  options=['Virtual Staging', 'Renovation Preview', 'Material Swap', 'Layout Variation'],
239
  key='output_mode_select',
240
- help="Choose the type of visualization you want."
241
- ).lower().replace(' ', '_') # Convert to key format like 'virtual_staging'
242
 
243
  st.markdown("---")
244
  st.subheader("3. Scene Parameters")
245
- room_type = st.selectbox(
246
- "Room Type:",
247
- ["Living Room", "Bedroom", "Kitchen", "Dining Room", "Office", "Bathroom", "Other"],
248
- key="room_select"
249
- )
250
- style = st.selectbox(
251
- "Primary Style:",
252
- ["Modern", "Contemporary", "Minimalist", "Scandinavian", "Industrial", "Traditional", "Coastal", "Farmhouse", "Bohemian"],
253
- key="style_select"
254
- )
255
-
256
- # --- Advanced Controls Expander ---
257
- with st.expander("✨ Advanced Controls"):
258
- furniture_prefs = st.text_input(
259
- "Furniture Preferences (Optional)",
260
- placeholder="e.g., 'Large velvet green sofa', 'minimalist oak desk'",
261
- key="furniture_input",
262
- help="Describe specific furniture items or characteristics."
263
- )
264
-
265
- st.markdown("**Material Customization:**")
266
- wall_color = st.color_picker("Wall Color (Approx.)", value="#FFFFFF", key="wall_color_picker")
267
- floor_type = st.selectbox(
268
- "Floor Type",
269
- ["(Auto)", "Oak Wood", "Dark Wood", "Light Wood", "Carpet (Neutral)", "Concrete", "Tile (Light)", "Tile (Dark)"],
270
- key="floor_select"
271
- )
272
- materials_dict = {'wall_color': wall_color, 'floor_type': floor_type}
273
-
274
- st.markdown("**Lighting & Camera:**")
275
- lighting_time = st.slider(
276
- "Time of Day (Simulated)",
277
- min_value=0.0, max_value=1.0, value=0.5, step=0.1, format="%.1f",
278
- key="lighting_slider",
279
- help="0.0 = Dawn/Sunrise, 0.5 = Midday, 1.0 = Dusk/Sunset"
280
- )
281
- camera_angle = st.selectbox(
282
- "Camera Angle", ["Eye-Level", "High Angle", "Low Angle", "Wide Angle (Simulated)"],
283
- key="camera_select"
284
- )
285
-
286
- st.markdown("**AI Assist Features:**")
287
- remove_objects = st.checkbox(
288
- "Attempt to Remove Existing Objects/Furniture", value=False, key="remove_obj_check",
289
- help="If staging an image that isn't empty, AI will try to remove existing items first (Simulated)."
290
- )
291
-
292
  renovation_instructions = ""
293
- if output_mode == 'renovation_preview': # Show only in renovation mode
294
- renovation_instructions = st.text_input(
295
- "Renovation Instructions (Simulated)",
296
- placeholder="e.g., 'Remove center wall', 'add window on left wall'",
297
- key="renovation_input"
298
- )
299
 
300
  st.markdown("---")
301
  st.subheader("4. Generate Visualization")
302
- if st.button("🚀 Generate Advanced Visualization", key="generate_button", use_container_width=True):
303
- with st.spinner("Engaging Advanced AI Simulation... ✨"):
304
- try:
305
- run_params = {
306
- "input_data": st.session_state.input_data,
307
- "input_type": st.session_state.input_type,
308
- "output_mode": output_mode,
309
- "room_type": room_type,
310
- "style": style,
311
- "furniture_prefs": furniture_prefs,
312
- "materials": materials_dict,
313
- "lighting_time": lighting_time,
314
- "camera_angle": camera_angle,
315
- "remove_objects": remove_objects,
316
- "renovation_instructions": renovation_instructions,
317
- }
318
- st.session_state.last_run_params = run_params # Store params
319
- st.session_state.ai_result_image = run_advanced_ai_model(**run_params)
320
-
321
- except Exception as e:
322
- st.error(f"An error occurred during AI simulation: {e}")
323
- st.session_state.ai_result_image = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324
 
325
  else:
326
  st.info("⬆️ Upload a file to begin.")
327
 
328
-
329
  # --- Main Display Area ---
330
  col1, col2 = st.columns(2)
331
 
332
  with col1:
333
  st.subheader("Input")
334
- if st.session_state.input_data is not None:
335
- if st.session_state.input_type == 'image':
336
- st.image(st.session_state.input_data, caption=f"Original: {st.session_state.uploaded_filename}", use_column_width=True)
 
 
 
 
337
  else:
338
- # Display info for non-image types
339
- display_input_placeholder(st.session_state.input_type, st.session_state.uploaded_filename)
340
  else:
341
- st.markdown("<div style='height: 400px; border: 2px dashed #ccc; display: flex; align-items: center; justify-content: center; text-align: center; color: #aaa; font-style: italic;'>Upload Input File</div>", unsafe_allow_html=True)
 
342
 
343
  with col2:
344
  st.subheader("AI Visualization Result")
345
- if st.session_state.ai_result_image is not None:
346
- # Display the resulting image
347
- run_mode_display = st.session_state.last_run_params.get('output_mode', 'N/A').replace('_', ' ').title()
348
- st.image(st.session_state.ai_result_image, caption=f"Result ({run_mode_display} Simulation)", use_column_width=True)
349
-
350
- # Display parameters used for this run
351
- with st.expander("View Parameters Used for This Result", expanded=False):
352
- st.json(st.session_state.last_run_params, expanded=True) # Cannot directly display image data in json
353
-
354
 
355
- # Download Button
356
- try:
357
- buf = io.BytesIO()
358
- img_to_save = st.session_state.ai_result_image
359
- save_format = 'PNG' # Use PNG to preserve potential overlay quality
360
- img_to_save.save(buf, format=save_format)
361
- byte_im = buf.getvalue()
362
-
363
- # Generate filename based on input and mode
364
- base_name = os.path.splitext(st.session_state.uploaded_filename or 'ai_result')[0]
365
- mode_name = st.session_state.last_run_params.get('output_mode', 'result')
366
- download_filename = f"{base_name}_{mode_name}.{save_format.lower()}"
367
-
368
- st.download_button(
369
- label=f"Download Result ({save_format})",
370
- data=byte_im,
371
- file_name=download_filename,
372
- mime=f"image/{save_format.lower()}"
373
- )
374
- except Exception as e:
375
- st.error(f"Could not prepare image for download: {e}")
376
-
377
- else:
378
- st.markdown("<div style='height: 400px; border: 2px dashed #ccc; display: flex; align-items: center; justify-content: center; text-align: center; color: #aaa; font-style: italic;'>Result will appear here</div>", unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
 
380
 
381
  st.markdown("---")
382
  st.warning("""
383
- **Disclaimer:** This is an advanced **demonstration** application.
384
- All AI functionalities (staging, renovation, material swaps, floor plan/3D model processing, object removal etc.) are **simulated** using placeholder logic and images.
385
- The purpose is to showcase a potential user interface and feature set for a sophisticated AI visualization tool.
386
  """)
 
1
  import streamlit as st
2
+ from PIL import Image, UnidentifiedImageError
3
  import io
4
  import time
5
  import os
6
+ import random
7
+ import json # For API simulation
8
+ import requests # To simulate API calls (though we won't make real ones here)
9
+ import uuid # For job IDs
10
 
11
  # ------------------------------------------------------------------------------
12
  # Page Configuration
13
  # ------------------------------------------------------------------------------
14
  st.set_page_config(
15
+ page_title="AI Real Estate Visualization Suite [PRO]",
16
  layout="wide",
17
+ page_icon="🚀",
18
  initial_sidebar_state="expanded"
19
  )
20
 
21
  # ------------------------------------------------------------------------------
22
+ # Simulated Backend API Interaction
23
  # ------------------------------------------------------------------------------
24
+ # Replace with your actual backend API endpoint
25
+ BACKEND_API_URL = "http://your-production-backend.com/api/v1/visualize"
26
+ # Replace with your actual status check endpoint
27
+ STATUS_API_URL = "http://your-production-backend.com/api/v1/status/{job_id}"
28
+
29
+ # --- Simulate API Call ---
30
+ def submit_visualization_job(payload: dict) -> tuple[str | None, str | None]:
 
 
 
 
 
 
 
 
 
 
31
  """
32
+ Simulates submitting a job to the backend API.
33
+ In reality, this would use 'requests.post'.
34
+
35
+ Args:
36
+ payload (dict): Data to send (params, input reference, etc.)
37
+
38
+ Returns:
39
+ tuple[str | None, str | None]: (job_id, error_message)
40
  """
41
+ st.info("Submitting job to backend simulation...")
42
+ print(f"SIMULATING API SUBMIT to {BACKEND_API_URL}")
43
+ print("Payload (summary):")
44
+ print(f" Mode: {payload.get('output_mode')}")
45
+ print(f" Style: {payload.get('style')}")
46
+ print(f" Input Type: {payload.get('input_type')}")
47
+ # Omit potentially large data like image bytes from console log in real scenario
48
+ # print(json.dumps(payload, indent=2)) # Don't print potentially large data
49
+
50
+ # Simulate network latency & backend processing start
51
+ time.sleep(1.5)
52
+
53
+ # Simulate success/failure
54
+ if random.random() < 0.95: # 95% success rate
55
+ job_id = f"job_{uuid.uuid4()}"
56
+ print(f"API Submit Simulation SUCCESS: Job ID = {job_id}")
57
+ # In a real app, store job_id associated with user/session
58
+ return job_id, None
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  else:
60
+ error_msg = "Simulated API Error: Failed to submit job (e.g., server busy, invalid params)."
61
+ print(f"API Submit Simulation FAILED: {error_msg}")
62
+ return None, error_msg
63
 
64
+ # --- Simulate Status Check ---
65
+ def check_job_status(job_id: str) -> tuple[str, str | None, str | None]:
66
+ """
67
+ Simulates checking the status of a job via the backend API.
68
+ In reality, this would use 'requests.get'.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
+ Args:
71
+ job_id (str): The ID of the job to check.
 
72
 
73
+ Returns:
74
+ tuple[str, str | None, str | None]: (status, result_url, error_message)
75
+ status: 'PENDING', 'PROCESSING', 'COMPLETED', 'FAILED'
76
+ """
77
+ status_url = STATUS_API_URL.format(job_id=job_id)
78
+ print(f"SIMULATING API STATUS CHECK for {job_id} at {status_url}")
79
+ time.sleep(0.5) # Simulate network latency
80
+
81
+ # Simulate different states based on time or random chance
82
+ # This is highly simplified; a real backend manages state.
83
+ if job_id not in st.session_state.job_progress:
84
+ st.session_state.job_progress[job_id] = 0 # Start progress counter
85
+
86
+ st.session_state.job_progress[job_id] += random.uniform(0.1, 0.3) # Increment progress
87
+
88
+ if st.session_state.job_progress[job_id] < 0.2:
89
+ status = "PENDING"
90
+ elif st.session_state.job_progress[job_id] < 0.8:
91
+ status = "PROCESSING"
92
+ elif st.session_state.job_progress[job_id] < 1.0:
93
+ # Simulate occasional failure during processing
94
+ if random.random() < 0.05: # 5% chance of failure during processing
95
+ print(f"API Status Simulation: Job {job_id} FAILED during processing.")
96
+ st.session_state.job_progress[job_id] = 99 # Mark as failed state
97
+ return "FAILED", None, "Simulated AI Processing Error."
98
+ else:
99
+ status = "PROCESSING" # Still processing
100
+ else:
101
+ status = "COMPLETED"
102
+
103
+ if status == "COMPLETED":
104
+ # Simulate getting a result URL (e.g., to a generated image in cloud storage)
105
+ # Use a *real placeholder path* accessible by the Streamlit app for the demo
106
+ result_placeholder = "assets/staged_result_placeholder.png" # Make sure this exists!
107
+ print(f"API Status Simulation: Job {job_id} COMPLETED. Result URL (simulated): {result_placeholder}")
108
+ return "COMPLETED", result_placeholder, None
109
+ elif status == "FAILED":
110
+ print(f"API Status Simulation: Job {job_id} FAILED.")
111
+ # Error message might have been set earlier
112
+ error = st.session_state.job_errors.get(job_id, "Unknown processing error.")
113
+ return "FAILED", None, error
114
+ else:
115
+ print(f"API Status Simulation: Job {job_id} is {status}.")
116
+ return status, None, None
117
+
118
+ # --- Simulate Fetching Result Image ---
119
+ def fetch_result_image(image_path_or_url: str) -> Image.Image | None:
120
+ """
121
+ Simulates fetching the result image from a URL or path.
122
+ In reality, this would use requests.get for a URL.
123
+ For this demo, we just load from the local placeholder path.
124
+ """
125
+ print(f"SIMULATING Fetching result image from: {image_path_or_url}")
126
+ if os.path.exists(image_path_or_url):
127
+ try:
128
+ img = Image.open(image_path_or_url).convert("RGB")
129
+ return img
130
+ except UnidentifiedImageError:
131
+ print(f"ERROR: Placeholder at '{image_path_or_url}' is not a valid image.")
132
+ return None
133
+ except Exception as e:
134
+ print(f"ERROR: Failed to load placeholder '{image_path_or_url}': {e}")
135
+ return None
136
+ else:
137
+ print(f"ERROR: Placeholder image not found at '{image_path_or_url}'.")
138
+ return None
139
 
140
  # ------------------------------------------------------------------------------
141
+ # Authentication Simulation
142
  # ------------------------------------------------------------------------------
143
+ def show_login_form():
144
+ st.warning("Please log in to use the Visualization Suite.")
145
+ with st.form("login_form"):
146
+ username = st.text_input("Username")
147
+ password = st.text_input("Password", type="password")
148
+ submitted = st.form_submit_button("Login")
149
+ if submitted:
150
+ # --- !!! WARNING: NEVER use hardcoded passwords in production !!! ---
151
+ # --- This is purely for demonstration. Use secure auth libraries ---
152
+ # --- like streamlit-authenticator or integrate with OAuth/etc. ---
153
+ if username == "admin" and password == "password123":
154
+ st.session_state.logged_in = True
155
+ st.session_state.username = username
156
+ st.success("Login successful!")
157
+ time.sleep(1) # Give user time to see success message
158
+ st.rerun() # Rerun to show the main app
159
+ else:
160
+ st.error("Invalid username or password.")
161
 
162
  # ------------------------------------------------------------------------------
163
+ # Initialize Session State (More Robust)
164
  # ------------------------------------------------------------------------------
165
+ def initialize_state():
166
+ defaults = {
167
+ 'logged_in': False,
168
+ 'username': None,
169
+ 'input_data_bytes': None, # Store raw bytes
170
+ 'input_image_preview': None, # Store PIL for display if image
171
+ 'input_type': None,
172
+ 'uploaded_filename': None,
173
+ 'current_job_id': None,
174
+ 'job_status': None, # PENDING, PROCESSING, COMPLETED, FAILED
175
+ 'job_progress': {}, # Dict to track progress simulation per job_id
176
+ 'job_errors': {}, # Dict to store errors per job_id
177
+ 'ai_result_image': None,
178
+ 'last_run_params': {}
179
+ }
180
+ for key, value in defaults.items():
181
+ if key not in st.session_state:
182
+ st.session_state[key] = value
183
+
184
+ initialize_state()
185
 
186
  # ------------------------------------------------------------------------------
187
+ # Main Application Logic
188
  # ------------------------------------------------------------------------------
189
+
190
+ # --- Authentication Gate ---
191
+ if not st.session_state.logged_in:
192
+ show_login_form()
193
+ st.stop() # Stop execution if not logged in
194
+
195
+ # --- Main App UI (if logged in) ---
196
+ st.title("🚀 AI Real Estate Visualization Suite [PRO]")
197
+ st.caption(f"Welcome, {st.session_state.username}! Advanced AI tools at your fingertips.")
198
  st.markdown("---")
199
 
200
  # --- Sidebar ---
201
  with st.sidebar:
202
  st.header("⚙️ Input & Configuration")
203
+ st.caption(f"User: {st.session_state.username}")
204
+ if st.button("Logout"):
205
+ for key in list(st.session_state.keys()): # Clear state on logout
206
+ del st.session_state[key]
207
+ initialize_state() # Re-init default state
208
+ st.rerun()
209
+
210
+ st.markdown("---")
211
+
212
+ # Prevent changing input while a job is running
213
+ input_disabled = st.session_state.job_status in ["PENDING", "PROCESSING"]
214
 
215
  input_file = st.file_uploader(
216
  "1. Upload File",
217
+ type=["png", "jpg", "jpeg", "webp", "dxf", "dwg", "obj", "fbx"], # Add more as needed
218
  key="file_uploader",
219
  accept_multiple_files=False,
220
+ help="Upload Room Image, Floor Plan (DXF - simulated), or 3D Model (OBJ - simulated).",
221
+ disabled=input_disabled
222
  )
223
 
224
  # --- Input Processing ---
 
228
  file_ext = os.path.splitext(input_file.name)[1].lower()
229
  file_bytes = input_file.getvalue()
230
  processed = False
231
+ input_image_preview = None
232
 
233
+ try:
234
+ if file_ext in ['.png', '.jpg', '.jpeg', '.webp']:
 
235
  image = Image.open(io.BytesIO(file_bytes)).convert("RGB")
236
+ max_size = (1024, 1024)
237
  image.thumbnail(max_size, Image.Resampling.LANCZOS)
238
+ input_image_preview = image # Store PIL for preview
239
+ input_type = 'image'
240
  processed = True
241
+ elif file_ext in ['.dxf', '.dwg']:
242
+ input_type = 'floorplan'
243
+ processed = True
244
+ st.warning("Floor plan processing is simulated.")
245
+ elif file_ext in ['.obj', '.fbx']:
246
+ input_type = '3dmodel'
247
+ processed = True
248
+ st.warning("3D model processing is simulated.")
249
+ else:
250
+ st.error(f"Unsupported file type: {file_ext}")
251
+
252
+ if processed:
253
+ st.session_state.input_data_bytes = file_bytes # Store bytes for API
254
+ st.session_state.input_image_preview = input_image_preview
255
+ st.session_state.input_type = input_type
256
+ st.session_state.uploaded_filename = input_file.name
257
+ # Reset job state
258
+ st.session_state.current_job_id = None
259
+ st.session_state.job_status = None
260
+ st.session_state.ai_result_image = None
261
+ st.session_state.last_run_params = {}
262
+ st.success(f"File '{input_file.name}' ({input_type}) loaded.")
263
+ st.rerun() # Rerun to reflect loaded state
264
+ else:
265
+ st.session_state.input_data_bytes = None
266
+ st.session_state.input_image_preview = None
267
+ st.session_state.input_type = None
268
+ st.session_state.uploaded_filename = None
269
+
270
+ except UnidentifiedImageError:
271
+ st.error("Uploaded file is not a valid image or is corrupted.")
272
+ except Exception as e:
273
+ st.error(f"Error processing file: {e}")
274
+ st.session_state.input_data_bytes = None
275
+ st.session_state.input_image_preview = None
276
  st.session_state.input_type = None
277
  st.session_state.uploaded_filename = None
278
 
 
 
 
 
 
 
 
279
 
280
+ # --- Configuration Options ---
281
+ if st.session_state.input_type is not None:
282
  st.markdown("---")
283
  st.subheader("2. Visualization Mode")
284
  output_mode = st.selectbox(
285
  "Select Mode:",
286
  options=['Virtual Staging', 'Renovation Preview', 'Material Swap', 'Layout Variation'],
287
  key='output_mode_select',
288
+ disabled=input_disabled
289
+ ).lower().replace(' ', '_')
290
 
291
  st.markdown("---")
292
  st.subheader("3. Scene Parameters")
293
+ room_type = st.selectbox("Room Type:", ["Living Room", "Bedroom", "Kitchen", "Dining Room", "Office", "Bathroom", "Other"], key="room_select", disabled=input_disabled)
294
+ style = st.selectbox("Primary Style:", ["Modern", "Contemporary", "Minimalist", "Scandinavian", "Industrial", "Traditional", "Coastal", "Farmhouse", "Bohemian"], key="style_select", disabled=input_disabled)
295
+
296
+ # Advanced Controls
297
+ with st.expander("✨ Advanced Controls", expanded=False):
298
+ furniture_prefs = st.text_input("Furniture Preferences", placeholder="e.g., 'Large velvet green sofa'", key="furniture_input", disabled=input_disabled)
299
+ wall_color = st.color_picker("Wall Color (Approx.)", value="#FFFFFF", key="wall_color_picker", disabled=input_disabled)
300
+ floor_type = st.selectbox("Floor Type", ["(Auto)", "Oak Wood", "Dark Wood", "Light Wood", "Carpet (Neutral)", "Concrete", "Tile (Light)", "Tile (Dark)"], key="floor_select", disabled=input_disabled)
301
+ lighting_time = st.slider("Time of Day", 0.0, 1.0, 0.5, 0.1, "%.1f", key="lighting_slider", help="0.0=Dawn, 0.5=Midday, 1.0=Dusk", disabled=input_disabled)
302
+ camera_angle = st.selectbox("Camera Angle", ["Eye-Level", "High Angle", "Low Angle", "Wide (Simulated)"], key="camera_select", disabled=input_disabled)
303
+ remove_objects = st.checkbox("Attempt Remove Existing Objects", value=False, key="remove_obj_check", disabled=input_disabled)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304
  renovation_instructions = ""
305
+ if output_mode == 'renovation_preview':
306
+ renovation_instructions = st.text_input("Renovation Instructions", placeholder="e.g., 'Remove center wall'", key="renovation_input", disabled=input_disabled)
 
 
 
 
307
 
308
  st.markdown("---")
309
  st.subheader("4. Generate Visualization")
310
+
311
+ # Disable button if no input or job already running
312
+ disable_generate = st.session_state.input_type is None or st.session_state.job_status in ["PENDING", "PROCESSING"]
313
+ if st.button("🚀 Submit Visualization Job", key="generate_button", use_container_width=True, disabled=disable_generate):
314
+ # Prepare payload for the backend
315
+ # In production, you'd likely upload the file to S3 first and send a URL/key
316
+ # For image data, you might send base64 encoded string or upload separately
317
+ payload = {
318
+ "user_id": st.session_state.username, # Identify the user
319
+ # "input_reference": "s3://bucket/user_uploads/filename.jpg", # Example
320
+ "input_filename": st.session_state.uploaded_filename, # For info
321
+ "input_type": st.session_state.input_type,
322
+ "output_mode": output_mode,
323
+ "room_type": room_type,
324
+ "style": style,
325
+ "furniture_prefs": furniture_prefs,
326
+ "materials": {'wall_color': wall_color, 'floor_type': floor_type},
327
+ "lighting_time": lighting_time,
328
+ "camera_angle": camera_angle,
329
+ "remove_objects": remove_objects,
330
+ "renovation_instructions": renovation_instructions,
331
+ }
332
+ # Attach input data - simplistic approach for demo, REAL API would handle uploads better
333
+ # Never send large files directly in JSON payload in production!
334
+ # payload['input_data_b64'] = base64.b64encode(st.session_state.input_data_bytes).decode()
335
+
336
+ job_id, error = submit_visualization_job(payload)
337
+
338
+ if job_id:
339
+ st.session_state.current_job_id = job_id
340
+ st.session_state.job_status = "PENDING"
341
+ st.session_state.ai_result_image = None # Clear previous result
342
+ st.session_state.last_run_params = payload # Store params for display
343
+ st.session_state.job_progress = {job_id: 0} # Reset progress for new job
344
+ st.session_state.job_errors = {} # Clear old errors
345
+ st.success(f"Job submitted successfully! Job ID: {job_id}")
346
+ st.rerun() # Start polling
347
+ else:
348
+ st.error(f"Failed to submit job: {error}")
349
+ st.session_state.current_job_id = None
350
+ st.session_state.job_status = "FAILED" # Mark status
351
 
352
  else:
353
  st.info("⬆️ Upload a file to begin.")
354
 
 
355
  # --- Main Display Area ---
356
  col1, col2 = st.columns(2)
357
 
358
  with col1:
359
  st.subheader("Input")
360
+ if st.session_state.input_type is not None:
361
+ if st.session_state.input_type == 'image' and st.session_state.input_image_preview:
362
+ st.image(st.session_state.input_image_preview, caption=f"Input: {st.session_state.uploaded_filename}", use_column_width=True)
363
+ elif st.session_state.input_type != 'image':
364
+ # Display info for non-image types
365
+ st.info(f"{st.session_state.input_type.capitalize()} File:\n**{st.session_state.uploaded_filename}**")
366
+ st.caption("(Preview not available for non-image inputs in this demo)")
367
  else:
368
+ st.warning("Input loaded, but preview unavailable.")
 
369
  else:
370
+ st.markdown("<div style='height: 400px; border: 2px dashed #ccc; ...'>Upload Input File</div>", unsafe_allow_html=True)
371
+
372
 
373
  with col2:
374
  st.subheader("AI Visualization Result")
 
 
 
 
 
 
 
 
 
375
 
376
+ job_id = st.session_state.current_job_id
377
+ status = st.session_state.job_status
378
+
379
+ if job_id:
380
+ # --- Job Status Display ---
381
+ if status == "PENDING":
382
+ st.info(f"Job Status: Pending... (ID: {job_id})")
383
+ # Trigger periodic rerun for polling
384
+ time.sleep(5) # Poll every 5 seconds (adjust as needed)
385
+ st.rerun()
386
+ elif status == "PROCESSING":
387
+ progress_value = st.session_state.job_progress.get(job_id, 0)
388
+ st.progress(min(progress_value, 1.0), text=f"Job Status: Processing... ({int(min(progress_value, 1.0)*100)}%) (ID: {job_id})")
389
+ # Trigger periodic rerun for polling
390
+ time.sleep(3) # Poll faster while processing
391
+ st.rerun()
392
+ elif status == "COMPLETED":
393
+ st.success(f"Job Status: Completed! (ID: {job_id})")
394
+ if st.session_state.ai_result_image:
395
+ run_mode_display = st.session_state.last_run_params.get('output_mode', 'N/A').replace('_', ' ').title()
396
+ st.image(st.session_state.ai_result_image, caption=f"Result ({run_mode_display})", use_column_width=True)
397
+ # Download Button logic (similar to before)
398
+ # ... (Add download button code here) ...
399
+ else:
400
+ st.error("Job completed, but failed to load the result image.")
401
+ with st.expander("View Parameters Used", expanded=False):
402
+ # Display JSON but remove potentially large data fields first
403
+ params_to_display = {k:v for k,v in st.session_state.last_run_params.items()} # if k != 'input_data_b64'}
404
+ st.json(params_to_display, expanded=True)
405
+
406
+ elif status == "FAILED":
407
+ error_msg = st.session_state.job_errors.get(job_id, "An unknown error occurred.")
408
+ st.error(f"Job Status: Failed! (ID: {job_id})\nError: {error_msg}")
409
+ with st.expander("View Parameters Used", expanded=False):
410
+ params_to_display = {k:v for k,v in st.session_state.last_run_params.items()} # if k != 'input_data_b64'}
411
+ st.json(params_to_display, expanded=True)
412
+
413
+ # --- Logic to update status (if job is active) ---
414
+ if status in ["PENDING", "PROCESSING"]:
415
+ new_status, result_url, error = check_job_status(job_id)
416
+ st.session_state.job_status = new_status
417
+ if error:
418
+ st.session_state.job_errors[job_id] = error
419
+ if new_status == "COMPLETED" and result_url:
420
+ # Fetch the result image only when completed
421
+ st.session_state.ai_result_image = fetch_result_image(result_url)
422
+ if st.session_state.ai_result_image is None:
423
+ st.session_state.job_status = "FAILED" # Mark as failed if image fetch fails
424
+ st.session_state.job_errors[job_id] = "Failed to retrieve/load result image."
425
+ elif new_status == "FAILED" and not error: # If status is failed but no error stored yet
426
+ st.session_state.job_errors[job_id] = "Job failed for an unknown reason."
427
+
428
+ # Rerun immediately if status changed significantly to update UI
429
+ if status != new_status and new_status in ["COMPLETED", "FAILED"]:
430
+ st.rerun()
431
+
432
+ else: # No active job
433
+ st.markdown("<div style='height: 400px; border: 2px dashed #ccc; ...'>Result will appear here</div>", unsafe_allow_html=True)
434
 
435
 
436
  st.markdown("---")
437
  st.warning("""
438
+ **Disclaimer:** This is a **conceptual blueprint** for a production front-end.
439
+ User authentication is **not secure**. Backend API calls, job handling, status polling, and AI processing are **simulated**.
440
+ Building the actual backend infrastructure and state-of-the-art AI models requires significant resources and expertise.
441
  """)