File size: 3,578 Bytes
67e3963
 
 
 
 
 
b411743
67e3963
b411743
 
 
67e3963
 
 
 
 
 
 
 
 
b411743
67e3963
 
b411743
 
67e3963
 
 
 
 
 
b411743
 
 
 
 
 
 
 
 
 
 
67e3963
b411743
 
 
 
 
 
 
 
 
 
 
 
67e3963
b411743
 
67e3963
b411743
 
67e3963
 
b411743
67e3963
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import streamlit as st
from agents.analytics_pipeline import analytics_coordinator
import os
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES

st.set_page_config(page_title="BizIntel AI Ultra", layout="wide")
st.title("πŸ“Š BizIntel AI Ultra – Business Intelligence Agent")

# ──────────────────────────────────────────────────────────────
# ❢  DATA SOURCE SELECTION (CSV or Database)
# ──────────────────────────────────────────────────────────────
input_source = st.radio("Select data source", ["Upload CSV", "Connect to SQL Database"])
file_path = None

if input_source == "Upload CSV":
    uploaded_file = st.file_uploader("Upload CSV", type="csv")
    if uploaded_file:
        file_path = os.path.join("data", uploaded_file.name)
        with open(file_path, "wb") as f:
            f.write(uploaded_file.read())
        st.success("CSV file uploaded βœ…")

elif input_source == "Connect to SQL Database":
    engine = st.selectbox("Database engine", SUPPORTED_ENGINES)
    conn_str = st.text_input("SQLAlchemy connection string")
    if conn_str:
        tables = list_tables(conn_str)
        if tables:
            table_name = st.selectbox("Choose a table", tables)
            if table_name:
                file_path = fetch_data_from_db(conn_str, table_name)
                st.success(f"Fetched **{table_name}** as CSV βœ…")

# ──────────────────────────────────────────────────────────────
# ❷  OPTIONAL IMAGE UPLOAD + PREVIEW
# ──────────────────────────────────────────────────────────────
st.markdown("---")
st.subheader("πŸ“· Optional: Upload an Image for Preview / Future Analysis")

uploaded_image = st.file_uploader(
    "Upload an image (PNG orΒ JPG)", type=["png", "jpg", "jpeg"], key="img"
)

if uploaded_image is not None:
    image_path = os.path.join("data", uploaded_image.name)
    with open(image_path, "wb") as f:
        f.write(uploaded_image.read())
    st.image(image_path, caption="Uploaded Image", use_column_width=True)

    # πŸ‘‰Β If you later want to pass the image to an agent, you can add code here
    # e.g.Β result = image_analysis_agent.run(input=image_path)

# ──────────────────────────────────────────────────────────────
# ❸  RUN BUSINESS ANALYTICS PIPELINE
# ──────────────────────────────────────────────────────────────
if file_path:
    st.markdown("---")
    st.info("Running analytics pipeline… ⏳")
    result = analytics_coordinator.run(input=file_path)

    st.subheader("πŸ“ Analysis & Strategy Report")
    st.text(result)

    # Display generated charts if they exist
    if os.path.exists("sales_plot.png"):
        st.image("sales_plot.png", caption="Sales Trend", use_column_width=True)
    if os.path.exists("forecast_plot.png"):
        st.image("forecast_plot.png", caption="Forecast Chart", use_column_width=True)