Spaces:
Sleeping
Sleeping
File size: 3,578 Bytes
67e3963 b411743 67e3963 b411743 67e3963 b411743 67e3963 b411743 67e3963 b411743 67e3963 b411743 67e3963 b411743 67e3963 b411743 67e3963 b411743 67e3963 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import streamlit as st
from agents.analytics_pipeline import analytics_coordinator
import os
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
st.set_page_config(page_title="BizIntel AI Ultra", layout="wide")
st.title("π BizIntel AI UltraΒ β Business Intelligence Agent")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βΆ DATA SOURCE SELECTION (CSVΒ orΒ Database)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
input_source = st.radio("Select data source", ["Upload CSV", "Connect to SQL Database"])
file_path = None
if input_source == "Upload CSV":
uploaded_file = st.file_uploader("Upload CSV", type="csv")
if uploaded_file:
file_path = os.path.join("data", uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.read())
st.success("CSV file uploaded β
")
elif input_source == "Connect to SQL Database":
engine = st.selectbox("Database engine", SUPPORTED_ENGINES)
conn_str = st.text_input("SQLAlchemy connection string")
if conn_str:
tables = list_tables(conn_str)
if tables:
table_name = st.selectbox("Choose a table", tables)
if table_name:
file_path = fetch_data_from_db(conn_str, table_name)
st.success(f"Fetched **{table_name}** as CSV β
")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# β· OPTIONALΒ IMAGEΒ UPLOADΒ +Β PREVIEW
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.markdown("---")
st.subheader("π· Optional: Upload an Image for Preview / Future Analysis")
uploaded_image = st.file_uploader(
"Upload an image (PNG orΒ JPG)", type=["png", "jpg", "jpeg"], key="img"
)
if uploaded_image is not None:
image_path = os.path.join("data", uploaded_image.name)
with open(image_path, "wb") as f:
f.write(uploaded_image.read())
st.image(image_path, caption="Uploaded Image", use_column_width=True)
# πΒ If you later want to pass the image to an agent, you can add code here
# e.g.Β result = image_analysis_agent.run(input=image_path)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βΈ RUNΒ BUSINESSΒ ANALYTICSΒ PIPELINE
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if file_path:
st.markdown("---")
st.info("Running analytics pipelineβ¦ β³")
result = analytics_coordinator.run(input=file_path)
st.subheader("π Analysis & Strategy Report")
st.text(result)
# Display generated charts if they exist
if os.path.exists("sales_plot.png"):
st.image("sales_plot.png", caption="Sales Trend", use_column_width=True)
if os.path.exists("forecast_plot.png"):
st.image("forecast_plot.png", caption="Forecast Chart", use_column_width=True)
|