Spaces:
Sleeping
Sleeping
File size: 8,624 Bytes
d037161 e490e03 309eec4 c7c64f3 f0be302 773f0cf 2c362d2 309eec4 10c7dea 3acbc9c 309eec4 10c7dea 773f0cf c7c64f3 773f0cf 10c7dea e490e03 d037161 e490e03 10c7dea 2c362d2 b3a1f0c f0be302 2c362d2 67e3963 e490e03 c7c64f3 e490e03 773f0cf c7c64f3 67e3963 72a73ff e490e03 d037161 e490e03 f0be302 773f0cf f0be302 c7c64f3 f0be302 c7c64f3 773f0cf d037161 f0be302 d037161 f0be302 d037161 f0be302 d037161 f0be302 d037161 f0be302 d037161 773f0cf c7c64f3 773f0cf c7c64f3 f0be302 d037161 773f0cf 309eec4 d037161 773f0cf f0be302 10c7dea 773f0cf d037161 773f0cf d037161 10c7dea e490e03 f0be302 e490e03 f0be302 2c362d2 10c7dea d037161 3acbc9c e490e03 3acbc9c 773f0cf e490e03 10c7dea d037161 c7c64f3 e490e03 c7c64f3 f0be302 773f0cf e490e03 c7c64f3 e490e03 523228c c7c64f3 e490e03 773f0cf f0be302 e490e03 523228c 773f0cf 3acbc9c d826a13 c7c64f3 f0be302 c7c64f3 d037161 c7c64f3 d037161 c7c64f3 f0be302 d037161 523228c c7c64f3 773f0cf e490e03 c7c64f3 e490e03 523228c 3acbc9c d037161 523228c 773f0cf d037161 d826a13 773f0cf d037161 3acbc9c 773f0cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# app.py โ BizIntelย AIย Ultra (CSV, Excel, DB; Plotly, Geminiโฏ1.5โฏPro)
import os
import tempfile
from io import StringIO
from typing import Literal
import pandas as pd
import streamlit as st
import google.generativeai as genai
import plotly.graph_objects as go
from tools.csv_parser import parse_csv_tool
from tools.plot_generator import plot_sales_tool
from tools.forecaster import forecast_tool
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 1. GEMINI 1.5โPRO
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
gemini = genai.GenerativeModel(
"gemini-1.5-pro-latest",
generation_config={"temperature": 0.7, "top_p": 0.9, "response_mime_type": "text/plain"},
)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 2. PAGE SETUP
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
st.set_page_config(page_title="BizIntelย AIย Ultra", layout="wide")
st.title("๐ BizIntelย AIย Ultraย โ Advanced Analytics + Geminiย 1.5ย Pro")
TEMP_DIR = tempfile.gettempdir()
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 3. DATA SOURCE (CSV, Excel, or DB)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
source = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"])
csv_path: str | None = None
file_type: Literal["csv", "excel"] | None = None
if source == "Upload CSV / Excel":
up = st.file_uploader("Upload CSV or Excel (โคโฏ500โฏMB)", type=["csv", "xlsx", "xls"])
if up:
suffix = up.name.split(".")[-1].lower()
temp_path = os.path.join(TEMP_DIR, up.name)
with open(temp_path, "wb") as f:
f.write(up.read())
if suffix == "csv":
csv_path = temp_path
file_type = "csv"
else: # Excel โ convert sheet0 to CSV
file_type = "excel"
try:
df_excel = pd.read_excel(temp_path, sheet_name=0) # loads first sheet
csv_path = os.path.splitext(temp_path)[0] + ".csv"
df_excel.to_csv(csv_path, index=False)
except Exception as e:
st.error(f"Excel parsing failed: {e}")
st.stop()
st.success(f"{up.name} saved โ
")
else: # SQL DB
engine = st.selectbox("DB engine", SUPPORTED_ENGINES)
conn = st.text_input("SQLAlchemy connection string")
if conn:
try:
tbls = list_tables(conn)
tbl = st.selectbox("Table", tbls)
if st.button("Fetch table"):
csv_path = fetch_data_from_db(conn, tbl)
file_type = "csv"
st.success(f"Fetched **{tbl}** as CSV โ
")
except Exception as e:
st.error(f"Connection failed: {e}")
st.stop()
if csv_path is None:
st.stop()
# Download working CSV
with open(csv_path, "rb") as f:
st.download_button("โฌ๏ธย Download working CSV", f, file_name=os.path.basename(csv_path))
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 4. PREVIEW & DATE COL
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
df_preview = pd.read_csv(csv_path, nrows=5)
st.dataframe(df_preview)
date_col = st.selectbox("Select date/time column for forecasting", df_preview.columns)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 5. LOCAL TOOLS
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
with st.spinner("Parsing datasetโฆ"):
summary_text = parse_csv_tool(csv_path)
with st.spinner("๐ Generating sales trendโฆ"):
sales_fig = plot_sales_tool(csv_path, date_col=date_col)
if isinstance(sales_fig, go.Figure):
st.plotly_chart(sales_fig, use_container_width=True)
else:
st.warning(sales_fig)
with st.spinner("๐ฎ Forecastingโฆ"):
forecast_text = forecast_tool(csv_path, date_col=date_col)
forecast_png = "forecast_plot.png" if os.path.exists("forecast_plot.png") else None
if forecast_png:
st.image(forecast_png, caption="Sales Forecast", use_column_width=True)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 6. GEMINI STRATEGY
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
prompt = (
f"You are **BizIntel Strategist AI**.\n\n"
f"### CSV Summary\n```\n{summary_text}\n```\n\n"
f"### Forecast Output\n```\n{forecast_text}\n```\n\n"
"Return **Markdown** with:\n"
"1. Five key insights\n"
"2. Three actionable strategies\n"
"3. Risk factors or anomalies\n"
"4. Suggested additional visuals\n"
)
st.subheader("๐ Strategy Recommendations (Geminiย 1.5ย Pro)")
with st.spinner("Generating insightsโฆ"):
strategy_md = gemini.generate_content(prompt).text
st.markdown(strategy_md)
st.download_button("โฌ๏ธย Download Strategy (.md)", strategy_md, file_name="strategy.md")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 7. KPI CARDS + EXPANDER
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
full_df = pd.read_csv(csv_path, low_memory=False)
total_rows = len(full_df)
num_cols = len(full_df.columns)
missing_pct = full_df.isna().mean().mean() * 100
st.markdown("---")
st.subheader("๐ Dataset Overview")
c1, c2, c3 = st.columns(3)
c1.metric("Rows", f"{total_rows:,}")
c2.metric("Columns", str(num_cols))
c3.metric("Missingย %", f"{missing_pct:.1f}%")
with st.expander("๐ย Detailed descriptive statistics"):
stats_df = full_df.describe().T.reset_index().rename(columns={"index": "Feature"})
st.dataframe(
stats_df.style.format(precision=2).background_gradient(cmap="Blues"),
use_container_width=True,
)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 8. OPTIONAL EXPLORATORY VISUALS
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
st.markdown("---")
st.subheader("๐ Optional Exploratory Visuals")
num_cols = df_preview.select_dtypes("number").columns
if st.checkbox("Histogram"):
hcol = st.selectbox("Variable", num_cols, key="hist")
st.plotly_chart(histogram_tool(csv_path, hcol), use_container_width=True)
if st.checkbox("Scatterโmatrix"):
sel = st.multiselect("Choose columns", num_cols, default=num_cols[:3])
if sel:
st.plotly_chart(scatter_matrix_tool(csv_path, sel), use_container_width=True)
if st.checkbox("Correlation heatโmap"):
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)
|