Spaces:
Sleeping
Sleeping
File size: 8,027 Bytes
a875537 e4b2570 5f67bb9 e4b2570 a875537 29aad45 e4b2570 a875537 e4b2570 a875537 e4b2570 a875537 e4b2570 a875537 e4b2570 a875537 e4b2570 5f67bb9 e4b2570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import streamlit as st
import pandas as pd
import numpy as np
import tempfile
from io import BytesIO
from sqlalchemy import create_engine
import plotly.express as px
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
# ββ Helpers to read CSV/Excel robustly βββββββββββββββββββββββββββββββββββββββββββ
@st.cache_data
def load_file(uploaded):
"""Read a CSV or Excel file into a DataFrame."""
try:
if uploaded.name.lower().endswith((".xls", ".xlsx")):
return pd.read_excel(uploaded, engine="openpyxl")
else:
return pd.read_csv(uploaded)
except Exception as e:
raise st.Error(f"Error parsing file: {e}")
# ββ Helpers for SQL database ββββββββββββββββββββββββββββββββββββββββββββββββββββ
SUPPORTED_ENGINES = ["postgresql", "mysql", "mssql+pyodbc", "oracle+cx_oracle"]
@st.cache_data
def list_tables(connection_string):
engine = create_engine(connection_string)
return engine.table_names()
@st.cache_data
def fetch_table(connection_string, table_name):
engine = create_engine(connection_string)
return pd.read_sql_table(table_name, engine)
# ββ Streamlit page setup ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.set_page_config(
page_title="BizIntel AI Ultra",
layout="wide",
initial_sidebar_state="expanded",
)
st.title("π BizIntel AI Ultra β Advanced Analytics + Gemini 1.5 Pro")
# ββ Data source selection βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
data_source = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"])
df = None
if data_source == "Upload CSV / Excel":
uploaded = st.file_uploader(
"Drag & drop file here (β€ 500 MB)",
type=["csv", "xls", "xlsx"],
accept_multiple_files=False,
)
if uploaded:
with st.spinner("Loading fileβ¦"):
df = load_file(uploaded)
st.success("β
File loaded into memory")
elif data_source == "Connect to SQL Database":
engine = st.selectbox("Select DB engine", SUPPORTED_ENGINES)
conn_str = st.text_input("Connection string (SQLAlchemy format)", placeholder="e.g. postgresql://user:pass@host:port/dbname")
if conn_str:
tables = list_tables(conn_str)
table = st.selectbox("Choose table", tables)
if table:
with st.spinner(f"Fetching `{table}`β¦"):
df = fetch_table(conn_str, table)
st.success(f"β
`{table}` loaded from database")
# ββ If DataFrame is ready, show overview and proceed βββββββββββββββββββββββββββ
if df is not None:
st.markdown("### ποΈ Preview")
st.dataframe(df.head(5), use_container_width=True)
# Dataset overview metrics
n_rows, n_cols = df.shape
missing_pct = (df.isna().sum().sum() / (n_rows * n_cols)) * 100
st.markdown("---")
c1, c2, c3 = st.columns(3)
c1.metric("Rows", f"{n_rows:,}")
c2.metric("Columns", f"{n_cols:,}")
c3.metric("Missing %", f"{missing_pct:.1f}%")
# Detailed stats
st.markdown("#### π Detailed descriptive statistics")
st.dataframe(df.describe(include="all").transpose(), use_container_width=True)
# Optional exploratory visuals
st.markdown("---")
st.markdown("#### π Optional Exploratory Visuals")
col1, col2, col3 = st.columns(3)
with col1:
if st.checkbox("Histogram"):
num_cols = df.select_dtypes(include="number").columns.tolist()
col = st.selectbox("Choose numeric column for histogram", num_cols, key="hist")
fig = px.histogram(df, x=col, nbins=30, title=f"Histogram of {col}")
st.plotly_chart(fig, use_container_width=True)
with col2:
if st.checkbox("Scatter matrix"):
num_cols = df.select_dtypes(include="number").columns.tolist()[:6] # limit to first 6
fig = px.scatter_matrix(df[num_cols], dimensions=num_cols, title="Scatter Matrix")
st.plotly_chart(fig, use_container_width=True)
with col3:
if st.checkbox("Correlation heatmap"):
corr = df.select_dtypes(include="number").corr()
fig, ax = plt.subplots(figsize=(6, 5))
im = ax.imshow(corr, vmin=-1, vmax=1, cmap="RdBu")
plt.xticks(range(len(corr)), corr.columns, rotation=45, ha="right")
plt.yticks(range(len(corr)), corr.columns)
plt.colorbar(im, ax=ax)
st.pyplot(fig)
# ββ Trend & Forecast ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.markdown("---")
st.markdown("### π Trend & Forecast")
# pick date/time column
dt_cols = df.columns[df.dtypes.isin([np.dtype("datetime64[ns]"), np.dtype("object")])].tolist()
date_col = st.selectbox("Select date/time column", dt_cols)
df[date_col] = pd.to_datetime(df[date_col], errors="coerce")
# pick numeric metric
num_cols = df.select_dtypes(include="number").columns.tolist()
metric_col = st.selectbox("Select numeric metric", num_cols)
# prepare time series
ts = df[[date_col, metric_col]].dropna()
ts = ts.set_index(date_col).sort_index()
ts = ts[~ts.index.duplicated(keep="first")]
# Trend plot
fig_trend = px.line(ts, y=metric_col, title=f"{metric_col} over Time")
st.plotly_chart(fig_trend, use_container_width=True)
# Forecast next 90 days with ARIMA
with st.spinner("Running 90-day forecastβ¦"):
try:
model = ARIMA(ts, order=(1, 1, 1)).fit()
fcast = model.get_forecast(90)
idx = pd.date_range(ts.index.max(), periods=91, freq="D")[1:]
df_f = pd.DataFrame({"forecast": fcast.predicted_mean}, index=idx)
fig_fc = px.line(
pd.concat([ts, df_f], axis=1),
labels={metric_col: metric_col, "forecast": "Forecast"},
title=f"{metric_col} & 90-Day Forecast",
)
st.plotly_chart(fig_fc, use_container_width=True)
except Exception as e:
st.error(f"Forecast failed: {e}")
# ββ Strategy Recommendations βββββββββββββββββββββββββββββββββββββββββββββ
st.markdown("---")
st.markdown("### π Strategy Recommendations")
st.markdown(
"""
1. **Data Quality First**
Address any missing or malformed dates before further time-series analysis.
2. **Trend & Seasonality**
Investigate any upward/downward trends and repeating seasonal patterns.
3. **Outlier Management**
Identify extreme highs/lows in your metricβcould be bulk orders or data errors.
4. **Segment-Level Analysis**
Drill into key dimensions (e.g. region, product) to tailor growth strategies.
5. **Predict & Act**
Use your 90-day forecasts to guide inventory, staffing, and marketing decisions.
"""
)
# downloadable strategy as markdown
strategy_md = st.session_state.get("strategy_md", "")
if not strategy_md:
strategy_md = st.session_state["strategy_md"] = st.container().markdown("β¦") # dummy to store
st.download_button(
"π₯ Download Strategy (.md)",
data="""
# BizIntel AI Ultra β Strategy Recommendations
1. Data Quality First: β¦
2. Trend & Seasonality: β¦
3. Outlier Management: β¦
4. Segment-Level Analysis: β¦
5. Predict & Act: β¦
""",
file_name="strategy.md",
mime="text/markdown",
)
|