Spaces:
Sleeping
Sleeping
# tools/forecaster.py | |
import pandas as pd | |
from statsmodels.tsa.arima.model import ARIMA | |
import plotly.graph_objects as go | |
def forecast_metric_tool(file_path: str, date_col: str, value_col: str): | |
""" | |
Forecast the next 3 periods for any numeric metric. | |
- Saves a date‐indexed Plotly PNG under /tmp via the safe write monkey‐patch. | |
- Returns a text table of the forecast. | |
""" | |
# 0) Read full CSV | |
df = pd.read_csv(file_path) | |
# 1) Check that both columns actually exist | |
if date_col not in df.columns: | |
return f"❌ Date column '{date_col}' not found in your data." | |
if value_col not in df.columns: | |
return f"❌ Metric column '{value_col}' not found in your data." | |
# 2) Parse dates | |
try: | |
df[date_col] = pd.to_datetime(df[date_col]) | |
except Exception: | |
return f"❌ Could not parse '{date_col}' as dates." | |
# 3) Coerce metric to numeric & drop invalid rows | |
df[value_col] = pd.to_numeric(df[value_col], errors="coerce") | |
df = df.dropna(subset=[date_col, value_col]) | |
if df.empty: | |
return f"❌ After coercion, no valid data remains for '{value_col}'." | |
# 4) Sort & index by date, collapse duplicates | |
df = df.sort_values(date_col).set_index(date_col) | |
df = df[[value_col]].groupby(level=0).mean() | |
# 5) Infer a frequency and re‐index | |
freq = pd.infer_freq(df.index) | |
if freq is None: | |
freq = "D" # fallback to daily | |
df = df.asfreq(freq) | |
# 6) Fit ARIMA (1,1,1) | |
try: | |
model = ARIMA(df[value_col], order=(1, 1, 1)) | |
model_fit = model.fit() | |
except Exception as e: | |
return f"❌ ARIMA fitting failed: {e}" | |
# 7) Produce a proper date‐indexed forecast | |
fc_res = model_fit.get_forecast(steps=3) | |
forecast = fc_res.predicted_mean | |
# 8) Plot history + forecast | |
fig = go.Figure() | |
fig.add_scatter( | |
x=df.index, y=df[value_col], | |
mode="lines", name=value_col | |
) | |
fig.add_scatter( | |
x=forecast.index, y=forecast, | |
mode="lines+markers", name="Forecast" | |
) | |
fig.update_layout( | |
title=f"{value_col} Forecast", | |
xaxis_title=date_col, | |
yaxis_title=value_col, | |
template="plotly_dark", | |
) | |
fig.write_image("forecast_plot.png") # lands in /tmp via our monkey‐patch | |
# 9) Return the forecast as a text table | |
return forecast.to_frame(name="Forecast").to_string() | |