BizIntel_AI / tools /forecaster.py
mgbam's picture
Update tools/forecaster.py
5405a02 verified
raw
history blame
2.42 kB
# tools/forecaster.py
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
import plotly.graph_objects as go
def forecast_metric_tool(file_path: str, date_col: str, value_col: str):
"""
Forecast the next 3 periods for any numeric metric.
- Saves a date‐indexed Plotly PNG under /tmp via the safe write monkey‐patch.
- Returns a text table of the forecast.
"""
# 0) Read full CSV
df = pd.read_csv(file_path)
# 1) Check that both columns actually exist
if date_col not in df.columns:
return f"❌ Date column '{date_col}' not found in your data."
if value_col not in df.columns:
return f"❌ Metric column '{value_col}' not found in your data."
# 2) Parse dates
try:
df[date_col] = pd.to_datetime(df[date_col])
except Exception:
return f"❌ Could not parse '{date_col}' as dates."
# 3) Coerce metric to numeric & drop invalid rows
df[value_col] = pd.to_numeric(df[value_col], errors="coerce")
df = df.dropna(subset=[date_col, value_col])
if df.empty:
return f"❌ After coercion, no valid data remains for '{value_col}'."
# 4) Sort & index by date, collapse duplicates
df = df.sort_values(date_col).set_index(date_col)
df = df[[value_col]].groupby(level=0).mean()
# 5) Infer a frequency and re‐index
freq = pd.infer_freq(df.index)
if freq is None:
freq = "D" # fallback to daily
df = df.asfreq(freq)
# 6) Fit ARIMA (1,1,1)
try:
model = ARIMA(df[value_col], order=(1, 1, 1))
model_fit = model.fit()
except Exception as e:
return f"❌ ARIMA fitting failed: {e}"
# 7) Produce a proper date‐indexed forecast
fc_res = model_fit.get_forecast(steps=3)
forecast = fc_res.predicted_mean
# 8) Plot history + forecast
fig = go.Figure()
fig.add_scatter(
x=df.index, y=df[value_col],
mode="lines", name=value_col
)
fig.add_scatter(
x=forecast.index, y=forecast,
mode="lines+markers", name="Forecast"
)
fig.update_layout(
title=f"{value_col} Forecast",
xaxis_title=date_col,
yaxis_title=value_col,
template="plotly_dark",
)
fig.write_image("forecast_plot.png") # lands in /tmp via our monkey‐patch
# 9) Return the forecast as a text table
return forecast.to_frame(name="Forecast").to_string()