BizIntel_AI / app.py
mgbam's picture
Update app.py
29aad45 verified
raw
history blame
7.64 kB
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import matplotlib.pyplot as plt
from io import BytesIO
from sqlalchemy import create_engine
from statsmodels.tsa.arima.model import ARIMA
# ── CONFIG ───────────────────────────────────────────────────────────────────────
st.set_page_config(
page_title="BizIntel AI Ultra",
layout="wide",
initial_sidebar_state="expanded"
)
# You must set OPENAI_API_KEY in your Streamlit Secrets
openai.api_key = st.secrets["OPENAI_API_KEY"]
# ── CACHEABLE HELPERS ────────────────────────────────────────────────────────────
@st.cache_data
def load_uploaded_file(uploaded):
"""Load CSV or Excel from memory into a DataFrame."""
try:
if uploaded.name.lower().endswith((".xls", ".xlsx")):
return pd.read_excel(uploaded, engine="openpyxl")
else:
return pd.read_csv(uploaded)
except Exception as e:
st.error(f"⚠️ File parsing failed: {e}")
return pd.DataFrame()
@st.cache_data
def list_db_tables(conn_str):
engine = create_engine(conn_str)
return engine.table_names()
@st.cache_data
def fetch_db_table(conn_str, table):
engine = create_engine(conn_str)
return pd.read_sql_table(table, engine)
# ── DATA NARRATIVE VIA OPENAI ───────────────────────────────────────────────────
def generate_data_narrative(df: pd.DataFrame) -> str:
"""Send a summary of df to OpenAI and return a polished narrative."""
summary = df.describe(include="all").transpose().round(2).to_dict()
prompt = (
"You are a world-class data analyst. "
"Below is a JSON summary of a dataset. "
"Write a concise, professional narrative highlighting the top 5 business-critical insights, "
"in bullet format:\n\n"
f"{summary}\n\n"
)
resp = openai.ChatCompletion.create(
model="gpt-4o-mini", # or "gpt-4o", "gpt-4o-mini-high"
messages=[{"role":"user","content":prompt}],
temperature=0.3,
)
return resp.choices[0].message.content.strip()
# ── APP ─────────────────────────────────────────────────────────────────────────
st.title("πŸ“Š BizIntel AI Ultra – Advanced Analytics + Gemini 1.5 Pro")
# 1) Choose data source
source = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"])
df = pd.DataFrame()
if source == "Upload CSV / Excel":
uploaded = st.file_uploader(
"Drag & drop file here (≀500 MB) β€’ .csv, .xls, .xlsx",
type=["csv","xls","xlsx"]
)
if uploaded:
with st.spinner("Loading file…"):
df = load_uploaded_file(uploaded)
else:
engine = st.selectbox("DB engine", ["postgresql","mysql","mssql+pyodbc","oracle+cx_oracle"])
conn_str = st.text_input("Connection string", placeholder="dialect+driver://user:pass@host/db")
if conn_str:
tables = list_db_tables(conn_str)
table = st.selectbox("Choose table", tables)
if table:
with st.spinner(f"Fetching `{table}`…"):
df = fetch_db_table(conn_str, table)
# 2) If we have data…
if not df.empty:
st.success("βœ… Data loaded!")
st.markdown("---")
# 2a) Preview & summary metrics
st.subheader("πŸ—‚ Data Preview & Overview")
st.dataframe(df.head(5), use_container_width=True)
r, c = df.shape
missing_pct = (df.isna().sum().sum() / (r*c) * 100).round(1)
col1, col2, col3 = st.columns(3)
col1.metric("Rows", f"{r:,}")
col2.metric("Cols", f"{c:,}")
col3.metric("Missing %", f"{missing_pct}%")
st.markdown("---")
# 2b) Automated data narrative
st.subheader("πŸ“ Data Narrative")
with st.spinner("Generating insights…"):
narrative = generate_data_narrative(df)
st.markdown(narrative)
# 2c) Optional EDA visuals
st.subheader("πŸ”Ž Exploratory Visuals")
num_cols = df.select_dtypes("number").columns.tolist()
if st.checkbox("Show histogram"):
col = st.selectbox("Histogram column", num_cols, key="hist")
fig = px.histogram(df, x=col, nbins=30, title=f"Histogram of {col}")
st.plotly_chart(fig, use_container_width=True)
if st.checkbox("Show scatter matrix"):
dims = num_cols[:6]
fig = px.scatter_matrix(df[dims], dimensions=dims, title="Scatter Matrix")
st.plotly_chart(fig, use_container_width=True)
if st.checkbox("Show correlation heatmap"):
corr = df[num_cols].corr()
fig, ax = plt.subplots(figsize=(6,5))
im = ax.imshow(corr, cmap="RdBu", vmin=-1, vmax=1)
plt.xticks(range(len(corr)), corr.columns, rotation=45, ha="right")
plt.yticks(range(len(corr)), corr.columns)
plt.colorbar(im, ax=ax)
st.pyplot(fig)
# 3) Trend & forecast
st.markdown("---")
st.subheader("πŸ“ˆ Time-Series Trend & 90-Day Forecast")
# pick columns
dt_opts = [col for col in df.columns if pd.api.types.is_datetime64_any_dtype(df[col]) or df[col].dtype == "object"]
date_col = st.selectbox("Date column", dt_opts)
df[date_col] = pd.to_datetime(df[date_col], errors="coerce")
metric_col = st.selectbox("Metric column", num_cols)
ts = (
df[[date_col, metric_col]]
.dropna()
.set_index(date_col)
.sort_index()
.loc[~df.index.duplicated(keep="first")]
)
# plot trend
fig_trend = px.line(ts, y=metric_col, title=f"{metric_col} over Time", labels={"index":"Date"})
st.plotly_chart(fig_trend, use_container_width=True)
# forecast
with st.spinner("Running ARIMA…"):
try:
model = ARIMA(ts, order=(1,1,1)).fit()
future_idx = pd.date_range(start=ts.index.max(), periods=91, freq="D")[1:]
pred = model.get_forecast(90).predicted_mean
df_pred = pd.Series(pred.values, index=future_idx, name="Forecast")
combo = pd.concat([ts[metric_col], df_pred], axis=1)
fig_fc = px.line(
combo,
labels={metric_col:metric_col, "Forecast":"Forecast"},
title=f"{metric_col} & 90-Day Forecast"
)
st.plotly_chart(fig_fc, use_container_width=True)
except Exception as e:
st.error(f"Forecast failed: {e}")
# 4) Strategy download
st.markdown("---")
st.subheader("πŸš€ Actionable Strategy Brief")
strategy_md = """
# BizIntel AI Ultra – Strategy Brief
**1. Data Quality First**
Ensure all dates are parsed correctlyβ€”critical for any time-series modeling.
**2. Trend & Seasonality**
Investigate the underlying patterns and adjust your operations calendar.
**3. Outlier Management**
Flag and validate extreme observations to avoid skewed forecasts.
**4. Segment-Level Insights**
Drill into regions or product lines for targeted interventions.
**5. Predict & Act**
Leverage your 90-day projections for inventory, staffing, and marketing plans.
""".strip()
st.download_button(
"πŸ“₯ Download Strategy (.md)",
data=strategy_md,
file_name="bizintel_strategy.md",
mime="text/markdown"
)