Spaces:
Sleeping
Sleeping
# tools/forecaster.py | |
import pandas as pd | |
from statsmodels.tsa.arima.model import ARIMA | |
import plotly.graph_objects as go | |
def forecast_metric_tool(file_path: str, date_col: str, value_col: str): | |
""" | |
Forecast next 3 periods for any numeric metric, and return a textual table. | |
Saves a date-indexed PNG under /tmp via our safe monkey-patch. | |
""" | |
# 1) Load & parse | |
df = pd.read_csv(file_path) | |
try: | |
df[date_col] = pd.to_datetime(df[date_col]) | |
except Exception: | |
return f"β Could not parse '{date_col}' as dates." | |
# 2) Coerce metric to numeric & drop invalid | |
df[value_col] = pd.to_numeric(df[value_col], errors="coerce") | |
df = df.dropna(subset=[date_col, value_col]) | |
if df.empty: | |
return f"β No valid data for '{value_col}'." | |
# 3) Sort and set index, infer frequency | |
df = df.sort_values(date_col) | |
df.set_index(date_col, inplace=True) | |
freq = pd.infer_freq(df.index) | |
if freq is None: | |
# fallback to daily if pandas can't infer | |
freq = "D" | |
df = df.asfreq(freq) | |
# 4) Fit ARIMA | |
try: | |
model = ARIMA(df[value_col], order=(1, 1, 1)) | |
model_fit = model.fit() | |
except Exception as e: | |
return f"β ARIMA fitting failed: {e}" | |
# 5) Get a proper date-indexed forecast | |
fc_res = model_fit.get_forecast(steps=3) | |
forecast = fc_res.predicted_mean # a pd.Series with a DatetimeIndex | |
# 6) Plot historical + forecast | |
fig = go.Figure() | |
fig.add_scatter( | |
x=df.index, y=df[value_col], | |
mode="lines", name=value_col | |
) | |
fig.add_scatter( | |
x=forecast.index, y=forecast, | |
mode="lines+markers", name="Forecast" | |
) | |
fig.update_layout( | |
title=f"{value_col} Forecast", | |
xaxis_title=str(date_col), | |
yaxis_title=str(value_col), | |
template="plotly_dark" | |
) | |
fig.write_image("forecast_plot.png") | |
# 7) Return the forecast table as text | |
tbl = forecast.to_frame(name="Forecast") | |
return tbl.to_string() | |