Spaces:
Sleeping
Sleeping
import pandas as pd | |
from statsmodels.tsa.arima.model import ARIMA | |
import plotly.graph_objects as go | |
def forecast_metric_tool(file_path: str, date_col: str, value_col: str): | |
""" | |
Forecast next 3 periods for any numeric metric. | |
Saves PNG and returns forecast DataFrame as text. | |
""" | |
df = pd.read_csv(file_path) | |
try: | |
df[date_col] = pd.to_datetime(df[date_col]) | |
except Exception: | |
return f"β '{date_col}' not parseable as dates." | |
if value_col not in df.columns: | |
return f"β '{value_col}' column missing." | |
df.set_index(date_col, inplace=True) | |
model = ARIMA(df[value_col], order=(1, 1, 1)) | |
model_fit = model.fit() | |
forecast = model_fit.forecast(steps=3) | |
# Plot | |
fig = go.Figure() | |
fig.add_scatter(x=df.index, y=df[value_col], mode="lines", name=value_col) | |
fig.add_scatter(x=forecast.index, y=forecast, mode="lines", name="Forecast") | |
fig.update_layout(title=f"{value_col} Forecast", template="plotly_dark") | |
fig.write_image("forecast_plot.png") | |
return forecast.to_frame(name="Forecast").to_string() | |