Spaces:
Sleeping
Sleeping
import os | |
import tempfile | |
import streamlit as st | |
from agents.analytics_pipeline import analytics_coordinator | |
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 0. PAGE CONFIG | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
st.set_page_config(page_title="BizIntel AI Ultra", layout="wide") | |
st.title("π BizIntel AI UltraΒ β Business Intelligence Agent") | |
# Where we'll store any uploaded files (always writable in HF Spaces) | |
TEMP_DIR = tempfile.gettempdir() | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 1. DATA SOURCE SELECTION | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
input_source = st.radio("Select data source", ["Upload CSV", "Connect to SQL Database"]) | |
csv_path: str | None = None | |
if input_source == "Upload CSV": | |
uploaded_file = st.file_uploader("Upload CSV", type="csv") | |
if uploaded_file: | |
csv_path = os.path.join(TEMP_DIR, uploaded_file.name) | |
with open(csv_path, "wb") as f: | |
f.write(uploaded_file.read()) | |
st.success("CSV file saved to temporary storage β ") | |
elif input_source == "Connect to SQL Database": | |
engine = st.selectbox("Database engine", SUPPORTED_ENGINES) | |
conn_str = st.text_input("SQLAlchemy connection string") | |
if conn_str: | |
tables = list_tables(conn_str) | |
if tables: | |
table_name = st.selectbox("Choose a table", tables) | |
if table_name: | |
csv_path = fetch_data_from_db(conn_str, table_name) | |
st.success(f"Fetched **{table_name}** as CSV β ") | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 2. OPTIONAL IMAGE UPLOAD & PREVIEW | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
st.markdown("---") | |
st.subheader("π· Optional: Upload an Image for Preview / Future Analysis") | |
img_file = st.file_uploader( | |
"Upload an image (PNG/JPG)", type=["png", "jpg", "jpeg"], key="img" | |
) | |
if img_file: | |
img_path = os.path.join(TEMP_DIR, img_file.name) | |
with open(img_path, "wb") as f: | |
f.write(img_file.read()) | |
st.image(img_path, caption="Uploaded Image", use_column_width=True) | |
# π Future hook: pass `img_path` to a vision agent here. | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 3. RUN ANALYTICS PIPELINE | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
if csv_path: | |
st.markdown("---") | |
st.info("Running analytics pipelineβ¦ β³") | |
report = analytics_coordinator.run(input=csv_path) | |
st.subheader("π Analysis & Strategy Report") | |
st.text(report) | |
# Show charts generated by tool functions if present | |
for plot_name, caption in [ | |
("sales_plot.png", "Sales Trend"), | |
("forecast_plot.png", "Forecast Chart"), | |
]: | |
plot_path = os.path.join(TEMP_DIR, plot_name) | |
if os.path.exists(plot_path): | |
st.image(plot_path, caption=caption, use_column_width=True) | |