Spaces:
Sleeping
Sleeping
# app.py โ BizIntel AI Ultra | |
# Supports: CSV/Excel/DB ingestion, any numeric metric + date, interactive Plotly, Gemini 1.5 Pro, | |
# KPI cards, optional EDA, safe image writes, and updated use_container_width flag. | |
import os | |
import tempfile | |
from typing import Literal | |
import pandas as pd | |
import streamlit as st | |
import google.generativeai as genai | |
import plotly.graph_objects as go | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# REDIRECT ALL write_image CALLS TO A WRITABLE TEMP DIRECTORY | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
_tmp = tempfile.gettempdir() | |
_original_write = go.Figure.write_image | |
def _safe_write(self, path, *args, **kwargs): | |
fname = os.path.basename(path) | |
safe_path = os.path.join(_tmp, fname) | |
return _original_write(self, safe_path, *args, **kwargs) | |
go.Figure.write_image = _safe_write | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# TOOL IMPORTS (updated generic versions) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
from tools.csv_parser import parse_csv_tool | |
from tools.plot_generator import plot_metric_tool # date_col, metric_col | |
from tools.forecaster import forecast_metric_tool # date_col, metric_col | |
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool | |
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 1. GEMINI 1.5-PRO INITIALIZATION | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
genai.configure(api_key=os.getenv("GEMINI_APIKEY")) | |
gemini = genai.GenerativeModel( | |
"gemini-1.5-pro-latest", | |
generation_config={ | |
"temperature": 0.7, | |
"top_p": 0.9, | |
"response_mime_type": "text/plain", | |
}, | |
) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 2. STREAMLIT PAGE CONFIG | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
st.set_page_config(page_title="BizIntel AI Ultra", layout="wide") | |
st.title("๐ BizIntel AI Ultra โ Advanced Analytics + Gemini 1.5 Pro") | |
TEMP_DIR = tempfile.gettempdir() | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 3. DATA SOURCE: CSV / EXCEL / SQL DATABASE | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
source = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"]) | |
csv_path: str | None = None | |
if source == "Upload CSV / Excel": | |
upload = st.file_uploader("Upload CSV or Excel (โค 500 MB)", type=["csv", "xlsx", "xls"]) | |
if upload: | |
temp_path = os.path.join(TEMP_DIR, upload.name) | |
with open(temp_path, "wb") as f: | |
f.write(upload.read()) | |
if upload.name.lower().endswith(".csv"): | |
csv_path = temp_path | |
else: | |
try: | |
df_xl = pd.read_excel(temp_path, sheet_name=0) | |
csv_path = os.path.splitext(temp_path)[0] + ".csv" | |
df_xl.to_csv(csv_path, index=False) | |
except Exception as e: | |
st.error(f"Excel parsing failed: {e}") | |
st.stop() | |
st.success(f"{upload.name} saved โ ") | |
else: # SQL Database path | |
engine = st.selectbox("DB engine", SUPPORTED_ENGINES) | |
conn = st.text_input("SQLAlchemy connection string") | |
if conn: | |
try: | |
tables = list_tables(conn) | |
table = st.selectbox("Table", tables) | |
if st.button("Fetch table"): | |
csv_path = fetch_data_from_db(conn, table) | |
st.success(f"Fetched **{table}** as CSV โ ") | |
except Exception as e: | |
st.error(f"Connection failed: {e}") | |
st.stop() | |
if csv_path is None: | |
st.stop() | |
# Offer download of the working CSV | |
with open(csv_path, "rb") as f: | |
st.download_button("โฌ๏ธ Download working CSV", f, file_name=os.path.basename(csv_path)) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 4. COLUMN SELECTION: DATE + METRIC | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
df_head = pd.read_csv(csv_path, nrows=5) | |
st.dataframe(df_head) | |
date_col = st.selectbox("Select date/time column", df_head.columns) | |
numeric_cols = df_head.select_dtypes("number").columns.tolist() | |
metric_col = st.selectbox("Select numeric metric column", numeric_cols) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 5. LOCAL ANALYTICS: SUMMARY, TREND, FORECAST | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
with st.spinner("Parsing datasetโฆ"): | |
summary_text = parse_csv_tool(csv_path) | |
with st.spinner("Generating trend chartโฆ"): | |
trend_fig = plot_metric_tool(csv_path, date_col, metric_col) | |
if isinstance(trend_fig, go.Figure): | |
st.plotly_chart(trend_fig, use_container_width=True) | |
else: | |
st.warning(trend_fig) | |
with st.spinner("Forecastingโฆ"): | |
forecast_text = forecast_metric_tool(csv_path, date_col, metric_col) | |
# Display the forecast image saved under /tmp | |
st.subheader(f"๐ฎ {metric_col} Forecast") | |
forecast_png = os.path.join(TEMP_DIR, "forecast_plot.png") | |
if os.path.exists(forecast_png): | |
st.image(forecast_png, use_container_width=True) | |
else: | |
st.warning("Forecast image not found.") | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 6. GEMINI STRATEGY RECOMMENDATIONS | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
prompt = ( | |
f"You are **BizIntel Strategist AI**.\n\n" | |
f"### Dataset Summary\n```\n{summary_text}\n```\n\n" | |
f"### {metric_col} Forecast\n```\n{forecast_text}\n```\n\n" | |
"Return **Markdown** with:\n" | |
"1. Five key insights\n" | |
"2. Three actionable strategies\n" | |
"3. Risk factors or anomalies\n" | |
"4. Suggested additional visuals\n" | |
) | |
st.subheader("๐ Strategy Recommendations (Gemini 1.5 Pro)") | |
with st.spinner("Generating insightsโฆ"): | |
strategy_md = gemini.generate_content(prompt).text | |
st.markdown(strategy_md) | |
st.download_button("โฌ๏ธ Download Strategy (.md)", strategy_md, file_name="strategy.md") | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 7. KPI CARDS + DETAILED STATS EXPANDER | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
full_df = pd.read_csv(csv_path, low_memory=False) | |
total_rows = len(full_df) | |
num_cols = len(full_df.columns) | |
missing_pct = full_df.isna().mean().mean() * 100 | |
st.markdown("---") | |
st.subheader("๐ Dataset Overview") | |
col1, col2, col3 = st.columns(3) | |
col1.metric("Rows", f"{total_rows:,}") | |
col2.metric("Columns", str(num_cols)) | |
col3.metric("Missing %", f"{missing_pct:.1f}%") | |
with st.expander("๐ Detailed descriptive statistics"): | |
stats_df = full_df.describe().T.reset_index().rename(columns={"index": "Feature"}) | |
st.dataframe( | |
stats_df.style.format(precision=2).background_gradient(cmap="Blues"), | |
use_container_width=True, | |
) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
# 8. OPTIONAL EXPLORATORY VISUALS | |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
st.markdown("---") | |
st.subheader("๐ Optional Exploratory Visuals") | |
if st.checkbox("Histogram"): | |
hist_col = st.selectbox("Variable", numeric_cols, key="hist") | |
st.plotly_chart(histogram_tool(csv_path, hist_col), use_container_width=True) | |
if st.checkbox("Scatter-matrix"): | |
sel = st.multiselect("Choose columns", numeric_cols, default=numeric_cols[:3]) | |
if sel: | |
st.plotly_chart(scatter_matrix_tool(csv_path, sel), use_container_width=True) | |
if st.checkbox("Correlation heat-map"): | |
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True) | |