Spaces:
Sleeping
Sleeping
# tools/forecaster.py | |
import pandas as pd | |
from statsmodels.tsa.arima.model import ARIMA | |
import plotly.graph_objects as go | |
def forecast_metric_tool(file_path: str, date_col: str, value_col: str): | |
""" | |
Forecast next 3 periods for any numeric metric. | |
Saves PNG to /tmp via our safe write monkey-patch, returns forecast table as text. | |
""" | |
# 1) Load | |
df = pd.read_csv(file_path) | |
# 2) Parse dates | |
try: | |
df[date_col] = pd.to_datetime(df[date_col]) | |
except Exception: | |
return f"β Could not parse '{date_col}' as dates." | |
# 3) Coerce metric to numeric, drop invalid | |
df[value_col] = pd.to_numeric(df[value_col], errors="coerce") | |
series = df.set_index(date_col)[value_col].dropna() | |
if series.empty: | |
return f"β Column '{value_col}' has no valid numeric data after coercion." | |
# 4) Fit ARIMA | |
try: | |
model = ARIMA(series, order=(1, 1, 1)) | |
model_fit = model.fit() | |
except Exception as e: | |
return f"β ARIMA fitting failed: {e}" | |
# 5) Forecast & plot | |
forecast = model_fit.forecast(steps=3) | |
fig = go.Figure() | |
fig.add_scatter(x=series.index, y=series, mode="lines", name=value_col) | |
fig.add_scatter(x=forecast.index, y=forecast, mode="lines", name="Forecast") | |
fig.update_layout(title=f"{value_col} Forecast", template="plotly_dark") | |
fig.write_image("forecast_plot.png") # goes into /tmp thanks to our monkey-patch | |
# 6) Return textual table | |
return forecast.to_frame(name="Forecast").to_string() | |