Spaces:
Sleeping
Sleeping
# app.py – BizIntel AI Ultra v2.1 | |
# ============================================================= | |
# • Upload CSV / Excel • SQL–DB fetch • Trend + ARIMA forecast | |
# • Model explainability (summary, coef interp, ACF, back-test) | |
# • Gemini 1.5 Pro strategy generation | |
# • Optional EDA visuals • Safe Plotly PNG write to /tmp | |
# ============================================================= | |
import os | |
import tempfile | |
import warnings | |
from typing import List, Tuple | |
import numpy as np | |
import pandas as pd | |
import plotly.graph_objects as go | |
import streamlit as st | |
from statsmodels.tsa.arima.model import ARIMA | |
from statsmodels.graphics.tsaplots import plot_acf | |
from statsmodels.tsa.seasonal import seasonal_decompose | |
from statsmodels.tools.sm_exceptions import ConvergenceWarning | |
import google.generativeai as genai | |
# ────────────────────────────────────────────────────────────── | |
# Local helper modules | |
# ────────────────────────────────────────────────────────────── | |
from tools.csv_parser import parse_csv_tool | |
from tools.plot_generator import plot_metric_tool | |
from tools.forecaster import forecast_metric_tool # only for png path if needed | |
from tools.visuals import ( | |
histogram_tool, scatter_matrix_tool, corr_heatmap_tool | |
) | |
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES | |
# ────────────────────────────────────────────────────────────── | |
# Plotly safe write — ensure PNGs go to writable /tmp | |
# ────────────────────────────────────────────────────────────── | |
TMP = tempfile.gettempdir() | |
orig_write = go.Figure.write_image | |
go.Figure.write_image = lambda self, p, *a, **k: orig_write( | |
self, os.path.join(TMP, os.path.basename(p)), *a, **k | |
) | |
# ────────────────────────────────────────────────────────────── | |
# Gemini 1.5 Pro setup | |
# ────────────────────────────────────────────────────────────── | |
genai.configure(api_key=os.getenv("GEMINI_APIKEY")) | |
gemini = genai.GenerativeModel( | |
"gemini-1.5-pro-latest", | |
generation_config=dict(temperature=0.7, top_p=0.9, response_mime_type="text/plain"), | |
) | |
# ────────────────────────────────────────────────────────────── | |
# Streamlit layout | |
# ────────────────────────────────────────────────────────────── | |
st.set_page_config(page_title="BizIntel AI Ultra", layout="wide") | |
st.title("📊 BizIntel AI Ultra – Advanced Analytics + Gemini 1.5 Pro") | |
# ────────────────────────────────────────────────────────────── | |
# 1) Data source selection | |
# ────────────────────────────────────────────────────────────── | |
choice = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"]) | |
csv_path: str | None = None | |
if choice.startswith("Upload"): | |
up = st.file_uploader("CSV or Excel (≤ 500 MB)", type=["csv", "xlsx", "xls"]) | |
if up: | |
tmp = os.path.join(TMP, up.name) | |
with open(tmp, "wb") as f: | |
f.write(up.read()) | |
if up.name.lower().endswith(".csv"): | |
csv_path = tmp | |
else: | |
try: | |
pd.read_excel(tmp).to_csv(tmp + ".csv", index=False) | |
csv_path = tmp + ".csv" | |
except Exception as e: | |
st.error(f"Excel parse failed: {e}") | |
else: | |
eng = st.selectbox("DB engine", SUPPORTED_ENGINES, key="db_eng") | |
conn = st.text_input("SQLAlchemy connection string") | |
if conn: | |
try: | |
tbl = st.selectbox("Table", list_tables(conn)) | |
if st.button("Fetch table"): | |
csv_path = fetch_data_from_db(conn, tbl) | |
st.success(f"Fetched **{tbl}**") | |
except Exception as e: | |
st.error(f"DB error: {e}") | |
if not csv_path: | |
st.stop() | |
with open(csv_path, "rb") as f: | |
st.download_button("⬇️ Download working CSV", f, file_name=os.path.basename(csv_path)) | |
# ────────────────────────────────────────────────────────────── | |
# 2) Column pickers | |
# ────────────────────────────────────────────────────────────── | |
df_head = pd.read_csv(csv_path, nrows=5) | |
st.dataframe(df_head) | |
date_col = st.selectbox("Date/time column", df_head.columns) | |
numeric_df = df_head.select_dtypes("number") | |
metric_col = st.selectbox( | |
"Numeric metric column", | |
[c for c in numeric_df.columns if c != date_col] or numeric_df.columns | |
) | |
if metric_col is None: | |
st.warning("Need at least one numeric column.") | |
st.stop() | |
# ────────────────────────────────────────────────────────────── | |
# 3) Quick data summary & trend chart | |
# ────────────────────────────────────────────────────────────── | |
summary_md = parse_csv_tool(csv_path) | |
trend_res = plot_metric_tool(csv_path, date_col, metric_col) | |
if isinstance(trend_res, tuple): | |
trend_fig, _ = trend_res | |
elif isinstance(trend_res, go.Figure): | |
trend_fig = trend_res | |
else: # error message str | |
st.warning(trend_res) | |
trend_fig = None | |
if trend_fig is not None: | |
st.subheader("📈 Trend") | |
st.plotly_chart(trend_fig, use_container_width=True) | |
# ────────────────────────────────────────────────────────────── | |
# 4) Build clean series & ARIMA helpers | |
# ────────────────────────────────────────────────────────────── | |
def build_series(path, dcol, vcol): | |
df = pd.read_csv(path, usecols=[dcol, vcol]) | |
df[dcol] = pd.to_datetime(df[dcol], errors="coerce") | |
df[vcol] = pd.to_numeric(df[vcol], errors="coerce") | |
df = df.dropna(subset=[dcol, vcol]).sort_values(dcol) | |
if df.empty: | |
raise ValueError("Not enough valid data.") | |
s = df.set_index(dcol)[vcol].groupby(level=0).mean().sort_index() | |
freq = pd.infer_freq(s.index) or "D" | |
s = s.asfreq(freq).interpolate() | |
return s, freq | |
def fit_arima(series): | |
warnings.simplefilter("ignore", ConvergenceWarning) | |
return ARIMA(series, order=(1, 1, 1)).fit() | |
try: | |
series, freq = build_series(csv_path, date_col, metric_col) | |
horizon = 90 if freq == "D" else 3 | |
model_res = fit_arima(series) | |
fc_obj = model_res.get_forecast(horizon) | |
forecast = fc_obj.predicted_mean | |
ci = fc_obj.conf_int() | |
except Exception as e: | |
st.subheader(f"🔮 {metric_col} Forecast") | |
st.warning(f"Forecast failed: {e}") | |
forecast = ci = model_res = None | |
# ────────────────────────────────────────────────────────────── | |
# 5) Forecast plot & explainability | |
# ────────────────────────────────────────────────────────────── | |
if forecast is not None: | |
fig = go.Figure() | |
fig.add_scatter(x=series.index, y=series, mode="lines", name=metric_col) | |
fig.add_scatter(x=forecast.index, y=forecast, mode="lines+markers", name="Forecast") | |
fig.add_scatter( | |
x=ci.index, y=ci.iloc[:, 1], mode="lines", line=dict(width=0), showlegend=False | |
) | |
fig.add_scatter( | |
x=ci.index, | |
y=ci.iloc[:, 0], | |
mode="lines", | |
line=dict(width=0), | |
fill="tonexty", | |
fillcolor="rgba(255,0,0,0.25)", | |
showlegend=False, | |
) | |
fig.update_layout( | |
title=f"{metric_col} Forecast ({horizon} steps)", | |
xaxis_title=date_col, | |
yaxis_title=metric_col, | |
template="plotly_dark", | |
) | |
st.subheader(f"🔮 {metric_col} Forecast") | |
st.plotly_chart(fig, use_container_width=True) | |
# -- model summary ----------------------------------------------------- | |
st.subheader("📄 ARIMA Model Summary") | |
st.code(model_res.summary().as_text()) | |
# -- coefficient interpretation --------------------------------------- | |
ar, ma = model_res.arparams, model_res.maparams | |
interp = [] | |
if ar.size: | |
interp.append( | |
f"• AR(1) ={ar[0]:.2f} → " | |
f"{'strong' if abs(ar[0]) > 0.5 else 'moderate'} persistence." | |
) | |
if ma.size: | |
interp.append( | |
f"• MA(1) ={ma[0]:.2f} → " | |
f"{'large' if abs(ma[0]) > 0.5 else 'modest'} shock adjustment." | |
) | |
st.subheader("🗒 Coefficient Interpretation") | |
st.markdown("\n".join(interp) or "N/A") | |
# -- residual ACF ------------------------------------------------------ | |
st.subheader("🔍 Residual ACF") | |
acf_png = os.path.join(TMP, "acf.png") | |
plot_acf(model_res.resid.dropna(), lags=30, alpha=0.05) | |
import matplotlib.pyplot as plt | |
plt.tight_layout() | |
plt.savefig(acf_png, dpi=120) | |
plt.close() | |
st.image(acf_png, use_container_width=True) | |
# -- back-test --------------------------------------------------------- | |
k = max(int(len(series) * 0.2), 10) | |
train, test = series[:-k], series[-k:] | |
bt_res = ARIMA(train, order=(1, 1, 1)).fit() | |
bt_pred = bt_res.forecast(k) | |
mape = (abs(bt_pred - test) / test).mean() * 100 | |
rmse = np.sqrt(((bt_pred - test) ** 2).mean()) | |
st.subheader("🧪 Back-test (last 20 %)") | |
col1, col2 = st.columns(2) | |
col1.metric("MAPE", f"{mape:.2f}%") | |
col2.metric("RMSE", f"{rmse:,.0f}") | |
# -- seasonal decomposition (optional) -------------------------------- | |
with st.expander("Seasonal Decomposition"): | |
try: | |
period = {"D": 7, "H": 24, "M": 12}.get(freq) | |
if period: | |
dec = seasonal_decompose(series, period=period, model="additive") | |
for comp in ["trend", "seasonal", "resid"]: | |
st.line_chart(getattr(dec, comp).dropna(), height=150) | |
else: | |
st.info("Frequency not suited for decomposition.") | |
except Exception as e: | |
st.info(f"Decomposition failed: {e}") | |
# ────────────────────────────────────────────────────────────── | |
# 6) Gemini strategy report | |
# ────────────────────────────────────────────────────────────── | |
prompt = ( | |
"You are **BizIntel Strategist AI**.\n\n" | |
f"### Dataset Summary\n```\n{summary_md}\n```\n\n" | |
f"### {metric_col} Forecast\n```\n" | |
f"{forecast.to_string() if forecast is not None else 'N/A'}\n```" | |
"\nGenerate a Markdown report with:\n" | |
"• 5 insights\n• 3 actionable strategies\n• Risks / anomalies\n• Additional visuals." | |
) | |
with st.spinner("Gemini 1.5 Pro is thinking…"): | |
md = gemini.generate_content(prompt).text | |
st.subheader("🚀 Strategy Recommendations (Gemini 1.5 Pro)") | |
st.markdown(md) | |
st.download_button("⬇️ Download Strategy (.md)", md, file_name="strategy.md") | |
# ────────────────────────────────────────────────────────────── | |
# 7) High-level dataset KPIs + optional EDA | |
# ────────────────────────────────────────────────────────────── | |
fulldf = pd.read_csv(csv_path, low_memory=False) | |
rows, cols = fulldf.shape | |
miss_pct = fulldf.isna().mean().mean() * 100 | |
st.markdown("---") | |
st.subheader("📑 Dataset KPIs") | |
k1, k2, k3 = st.columns(3) | |
k1.metric("Rows", f"{rows:,}") | |
k2.metric("Columns", cols) | |
k3.metric("Missing %", f"{miss_pct:.1f}%") | |
with st.expander("Descriptive Statistics (numeric)"): | |
st.dataframe( | |
fulldf.describe().T.round(2).style.format(precision=2).background_gradient("Blues"), | |
use_container_width=True, | |
) | |
st.markdown("---") | |
st.subheader("🔍 Optional EDA Visuals") | |
if st.checkbox("Histogram"): | |
col = st.selectbox("Variable", fulldf.select_dtypes("number").columns) | |
hr = histogram_tool(csv_path, col) | |
if isinstance(hr, tuple): | |
st.plotly_chart(hr[0], use_container_width=True) | |
else: | |
st.warning(hr) | |
if st.checkbox("Scatter Matrix"): | |
opts = fulldf.select_dtypes("number").columns.tolist() | |
sel = st.multiselect("Columns", opts, default=opts[:3]) | |
if sel: | |
sm = scatter_matrix_tool(csv_path, sel) | |
if isinstance(sm, tuple): | |
st.plotly_chart(sm[0], use_container_width=True) | |
else: | |
st.warning(sm) | |
if st.checkbox("Correlation Heat-map"): | |
hm = corr_heatmap_tool(csv_path) | |
if isinstance(hm, tuple): | |
st.plotly_chart(hm[0], use_container_width=True) | |
else: | |
st.warning(hm) | |