Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,203 +1,189 @@
|
|
1 |
-
# app.py — BizIntel AI Ultra
|
2 |
-
# Supports: CSV/Excel/DB ingestion, date+metric plotting, ARIMA forecasting,
|
3 |
-
# safe Plotly writes into /tmp, Gemini 1.5 Pro strategy, KPI cards, optional EDA.
|
4 |
-
|
5 |
-
import os
|
6 |
-
import tempfile
|
7 |
-
|
8 |
-
import pandas as pd
|
9 |
import streamlit as st
|
10 |
-
import
|
11 |
-
import
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
-
|
46 |
-
# ──────────────────────────────────────────────────────────────
|
47 |
-
# 3) Streamlit page setup
|
48 |
-
# ──────────────────────────────────────────────────────────────
|
49 |
-
st.set_page_config(page_title="BizIntel AI Ultra", layout="wide")
|
50 |
st.title("📊 BizIntel AI Ultra – Advanced Analytics + Gemini 1.5 Pro")
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
with
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
try:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
except Exception as e:
|
89 |
-
st.error(f"
|
90 |
-
st.stop()
|
91 |
-
|
92 |
-
if not csv_path:
|
93 |
-
st.stop()
|
94 |
-
|
95 |
-
# Download the working CSV
|
96 |
-
with open(csv_path, "rb") as f:
|
97 |
-
st.download_button("⬇️ Download working CSV", f, file_name=os.path.basename(csv_path))
|
98 |
-
|
99 |
-
# ──────────────────────────────────────────────────────────────
|
100 |
-
# 5) Show head & pick date + metric (but never the same column)
|
101 |
-
# ──────────────────────────────────────────────────────────────
|
102 |
-
df_head = pd.read_csv(csv_path, nrows=5)
|
103 |
-
st.dataframe(df_head)
|
104 |
-
|
105 |
-
# a) Date dropdown over all columns
|
106 |
-
date_col = st.selectbox("Select date/time column", df_head.columns)
|
107 |
-
|
108 |
-
# b) Metric dropdown only numeric columns, excluding the chosen date_col
|
109 |
-
numeric_cols = df_head.select_dtypes("number").columns.tolist()
|
110 |
-
metric_options = [c for c in numeric_cols if c != date_col]
|
111 |
-
if not metric_options:
|
112 |
-
st.error(f"No numeric columns available once we exclude '{date_col}'.")
|
113 |
-
st.stop()
|
114 |
-
metric_col = st.selectbox("Select numeric metric column", metric_options)
|
115 |
-
|
116 |
-
# ──────────────────────────────────────────────────────────────
|
117 |
-
# 6) Local analysis: summary, trend chart, forecast
|
118 |
-
# ──────────────────────────────────────────────────────────────
|
119 |
-
with st.spinner("Parsing dataset…"):
|
120 |
-
summary_text = parse_csv_tool(csv_path)
|
121 |
-
|
122 |
-
with st.spinner("Generating trend chart…"):
|
123 |
-
trend_fig = plot_metric_tool(csv_path, date_col, metric_col)
|
124 |
-
if isinstance(trend_fig, go.Figure):
|
125 |
-
st.subheader("📈 Trend")
|
126 |
-
st.plotly_chart(trend_fig, use_container_width=True)
|
127 |
-
else:
|
128 |
-
st.warning(trend_fig)
|
129 |
-
|
130 |
-
with st.spinner("Running forecast…"):
|
131 |
-
forecast_text = forecast_metric_tool(csv_path, date_col, metric_col)
|
132 |
-
|
133 |
-
st.subheader(f"🔮 {metric_col} Forecast")
|
134 |
-
forecast_png = os.path.join(TEMP_DIR, "forecast_plot.png")
|
135 |
-
if os.path.exists(forecast_png):
|
136 |
-
st.image(forecast_png, use_container_width=True)
|
137 |
-
else:
|
138 |
-
st.warning("Forecast image not found.")
|
139 |
-
|
140 |
-
# ──────────────────────────────────────────────────────────────
|
141 |
-
# 7) Gemini-driven strategy recommendations
|
142 |
-
# ──────────────────────────────────────────────────────────────
|
143 |
-
prompt = (
|
144 |
-
f"You are **BizIntel Strategist AI**.\n\n"
|
145 |
-
f"### Dataset Summary\n```\n{summary_text}\n```\n\n"
|
146 |
-
f"### {metric_col} Forecast\n```\n{forecast_text}\n```\n\n"
|
147 |
-
"Return **Markdown** with:\n"
|
148 |
-
"1. Five key insights\n"
|
149 |
-
"2. Three actionable strategies\n"
|
150 |
-
"3. Risk factors or anomalies\n"
|
151 |
-
"4. Suggested additional visuals\n"
|
152 |
-
)
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
st.markdown(
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
total_rows = len(full_df)
|
165 |
-
num_columns = full_df.shape[1]
|
166 |
-
missing_pct = full_df.isna().mean().mean() * 100
|
167 |
-
|
168 |
-
st.markdown("---")
|
169 |
-
st.subheader("📑 Dataset Overview")
|
170 |
-
c1, c2, c3 = st.columns(3)
|
171 |
-
c1.metric("Rows", f"{total_rows:,}")
|
172 |
-
c2.metric("Columns", str(num_columns))
|
173 |
-
c3.metric("Missing %", f"{missing_pct:.1f}%")
|
174 |
-
|
175 |
-
with st.expander("🔎 Detailed descriptive statistics"):
|
176 |
-
stats_df = (
|
177 |
-
full_df.describe()
|
178 |
-
.T
|
179 |
-
.reset_index()
|
180 |
-
.rename(columns={"index":"Feature"})
|
181 |
-
)
|
182 |
-
st.dataframe(
|
183 |
-
stats_df.style.format(precision=2).background_gradient(cmap="Blues"),
|
184 |
-
use_container_width=True
|
185 |
-
)
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
# ──────────────────────────────────────────────────────────────
|
190 |
-
st.markdown("---")
|
191 |
-
st.subheader("🔍 Optional Exploratory Visuals")
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
st.plotly_chart(histogram_tool(csv_path, hcol), use_container_width=True)
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
|
202 |
-
|
203 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import tempfile
|
5 |
+
from io import BytesIO
|
6 |
+
from sqlalchemy import create_engine
|
7 |
+
import plotly.express as px
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from statsmodels.tsa.arima.model import ARIMA
|
10 |
+
|
11 |
+
# ── Helpers to read CSV/Excel robustly ───────────────────────────────────────────
|
12 |
+
@st.cache_data
|
13 |
+
def load_file(uploaded):
|
14 |
+
"""Read a CSV or Excel file into a DataFrame."""
|
15 |
+
try:
|
16 |
+
if uploaded.name.lower().endswith((".xls", ".xlsx")):
|
17 |
+
return pd.read_excel(uploaded, engine="openpyxl")
|
18 |
+
else:
|
19 |
+
return pd.read_csv(uploaded)
|
20 |
+
except Exception as e:
|
21 |
+
raise st.Error(f"Error parsing file: {e}")
|
22 |
+
|
23 |
+
# ── Helpers for SQL database ────────────────────────────────────────────────────
|
24 |
+
SUPPORTED_ENGINES = ["postgresql", "mysql", "mssql+pyodbc", "oracle+cx_oracle"]
|
25 |
+
@st.cache_data
|
26 |
+
def list_tables(connection_string):
|
27 |
+
engine = create_engine(connection_string)
|
28 |
+
return engine.table_names()
|
29 |
+
|
30 |
+
@st.cache_data
|
31 |
+
def fetch_table(connection_string, table_name):
|
32 |
+
engine = create_engine(connection_string)
|
33 |
+
return pd.read_sql_table(table_name, engine)
|
34 |
+
|
35 |
+
# ── Streamlit page setup ────────────────────────────────────────────────────────
|
36 |
+
st.set_page_config(
|
37 |
+
page_title="BizIntel AI Ultra",
|
38 |
+
layout="wide",
|
39 |
+
initial_sidebar_state="expanded",
|
40 |
)
|
|
|
|
|
|
|
|
|
|
|
41 |
st.title("📊 BizIntel AI Ultra – Advanced Analytics + Gemini 1.5 Pro")
|
42 |
+
|
43 |
+
# ── Data source selection ───────────────────────────────────────────────────────
|
44 |
+
data_source = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"])
|
45 |
+
|
46 |
+
df = None
|
47 |
+
if data_source == "Upload CSV / Excel":
|
48 |
+
uploaded = st.file_uploader(
|
49 |
+
"Drag & drop file here (≤ 500 MB)",
|
50 |
+
type=["csv", "xls", "xlsx"],
|
51 |
+
accept_multiple_files=False,
|
52 |
+
)
|
53 |
+
if uploaded:
|
54 |
+
with st.spinner("Loading file…"):
|
55 |
+
df = load_file(uploaded)
|
56 |
+
st.success("✅ File loaded into memory")
|
57 |
+
elif data_source == "Connect to SQL Database":
|
58 |
+
engine = st.selectbox("Select DB engine", SUPPORTED_ENGINES)
|
59 |
+
conn_str = st.text_input("Connection string (SQLAlchemy format)", placeholder="e.g. postgresql://user:pass@host:port/dbname")
|
60 |
+
if conn_str:
|
61 |
+
tables = list_tables(conn_str)
|
62 |
+
table = st.selectbox("Choose table", tables)
|
63 |
+
if table:
|
64 |
+
with st.spinner(f"Fetching `{table}`…"):
|
65 |
+
df = fetch_table(conn_str, table)
|
66 |
+
st.success(f"✅ `{table}` loaded from database")
|
67 |
+
|
68 |
+
# ── If DataFrame is ready, show overview and proceed ───────────────────────────
|
69 |
+
if df is not None:
|
70 |
+
st.markdown("### 🗂️ Preview")
|
71 |
+
st.dataframe(df.head(5), use_container_width=True)
|
72 |
+
|
73 |
+
# Dataset overview metrics
|
74 |
+
n_rows, n_cols = df.shape
|
75 |
+
missing_pct = (df.isna().sum().sum() / (n_rows * n_cols)) * 100
|
76 |
+
st.markdown("---")
|
77 |
+
c1, c2, c3 = st.columns(3)
|
78 |
+
c1.metric("Rows", f"{n_rows:,}")
|
79 |
+
c2.metric("Columns", f"{n_cols:,}")
|
80 |
+
c3.metric("Missing %", f"{missing_pct:.1f}%")
|
81 |
+
|
82 |
+
# Detailed stats
|
83 |
+
st.markdown("#### 📋 Detailed descriptive statistics")
|
84 |
+
st.dataframe(df.describe(include="all").transpose(), use_container_width=True)
|
85 |
+
|
86 |
+
# Optional exploratory visuals
|
87 |
+
st.markdown("---")
|
88 |
+
st.markdown("#### 🔎 Optional Exploratory Visuals")
|
89 |
+
col1, col2, col3 = st.columns(3)
|
90 |
+
with col1:
|
91 |
+
if st.checkbox("Histogram"):
|
92 |
+
num_cols = df.select_dtypes(include="number").columns.tolist()
|
93 |
+
col = st.selectbox("Choose numeric column for histogram", num_cols, key="hist")
|
94 |
+
fig = px.histogram(df, x=col, nbins=30, title=f"Histogram of {col}")
|
95 |
+
st.plotly_chart(fig, use_container_width=True)
|
96 |
+
with col2:
|
97 |
+
if st.checkbox("Scatter matrix"):
|
98 |
+
num_cols = df.select_dtypes(include="number").columns.tolist()[:6] # limit to first 6
|
99 |
+
fig = px.scatter_matrix(df[num_cols], dimensions=num_cols, title="Scatter Matrix")
|
100 |
+
st.plotly_chart(fig, use_container_width=True)
|
101 |
+
with col3:
|
102 |
+
if st.checkbox("Correlation heatmap"):
|
103 |
+
corr = df.select_dtypes(include="number").corr()
|
104 |
+
fig, ax = plt.subplots(figsize=(6, 5))
|
105 |
+
im = ax.imshow(corr, vmin=-1, vmax=1, cmap="RdBu")
|
106 |
+
plt.xticks(range(len(corr)), corr.columns, rotation=45, ha="right")
|
107 |
+
plt.yticks(range(len(corr)), corr.columns)
|
108 |
+
plt.colorbar(im, ax=ax)
|
109 |
+
st.pyplot(fig)
|
110 |
+
|
111 |
+
# ── Trend & Forecast ──────────────────────────────────────────────────────
|
112 |
+
st.markdown("---")
|
113 |
+
st.markdown("### 📈 Trend & Forecast")
|
114 |
+
# pick date/time column
|
115 |
+
dt_cols = df.columns[df.dtypes.isin([np.dtype("datetime64[ns]"), np.dtype("object")])].tolist()
|
116 |
+
date_col = st.selectbox("Select date/time column", dt_cols)
|
117 |
+
df[date_col] = pd.to_datetime(df[date_col], errors="coerce")
|
118 |
+
|
119 |
+
# pick numeric metric
|
120 |
+
num_cols = df.select_dtypes(include="number").columns.tolist()
|
121 |
+
metric_col = st.selectbox("Select numeric metric", num_cols)
|
122 |
+
|
123 |
+
# prepare time series
|
124 |
+
ts = df[[date_col, metric_col]].dropna()
|
125 |
+
ts = ts.set_index(date_col).sort_index()
|
126 |
+
ts = ts[~ts.index.duplicated(keep="first")]
|
127 |
+
|
128 |
+
# Trend plot
|
129 |
+
fig_trend = px.line(ts, y=metric_col, title=f"{metric_col} over Time")
|
130 |
+
st.plotly_chart(fig_trend, use_container_width=True)
|
131 |
+
|
132 |
+
# Forecast next 90 days with ARIMA
|
133 |
+
with st.spinner("Running 90-day forecast…"):
|
134 |
try:
|
135 |
+
model = ARIMA(ts, order=(1, 1, 1)).fit()
|
136 |
+
fcast = model.get_forecast(90)
|
137 |
+
idx = pd.date_range(ts.index.max(), periods=91, freq="D")[1:]
|
138 |
+
df_f = pd.DataFrame({"forecast": fcast.predicted_mean}, index=idx)
|
139 |
+
|
140 |
+
fig_fc = px.line(
|
141 |
+
pd.concat([ts, df_f], axis=1),
|
142 |
+
labels={metric_col: metric_col, "forecast": "Forecast"},
|
143 |
+
title=f"{metric_col} & 90-Day Forecast",
|
144 |
+
)
|
145 |
+
st.plotly_chart(fig_fc, use_container_width=True)
|
146 |
except Exception as e:
|
147 |
+
st.error(f"Forecast failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
# ── Strategy Recommendations ─────────────────────────────────────────────
|
150 |
+
st.markdown("---")
|
151 |
+
st.markdown("### 🚀 Strategy Recommendations")
|
152 |
+
st.markdown(
|
153 |
+
"""
|
154 |
+
1. **Data Quality First**
|
155 |
+
Address any missing or malformed dates before further time-series analysis.
|
156 |
+
|
157 |
+
2. **Trend & Seasonality**
|
158 |
+
Investigate any upward/downward trends and repeating seasonal patterns.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
3. **Outlier Management**
|
161 |
+
Identify extreme highs/lows in your metric—could be bulk orders or data errors.
|
|
|
|
|
|
|
162 |
|
163 |
+
4. **Segment-Level Analysis**
|
164 |
+
Drill into key dimensions (e.g. region, product) to tailor growth strategies.
|
|
|
165 |
|
166 |
+
5. **Predict & Act**
|
167 |
+
Use your 90-day forecasts to guide inventory, staffing, and marketing decisions.
|
168 |
+
"""
|
169 |
+
)
|
170 |
|
171 |
+
# downloadable strategy as markdown
|
172 |
+
strategy_md = st.session_state.get("strategy_md", "")
|
173 |
+
if not strategy_md:
|
174 |
+
strategy_md = st.session_state["strategy_md"] = st.container().markdown("…") # dummy to store
|
175 |
+
|
176 |
+
st.download_button(
|
177 |
+
"📥 Download Strategy (.md)",
|
178 |
+
data="""
|
179 |
+
# BizIntel AI Ultra – Strategy Recommendations
|
180 |
+
|
181 |
+
1. Data Quality First: …
|
182 |
+
2. Trend & Seasonality: …
|
183 |
+
3. Outlier Management: …
|
184 |
+
4. Segment-Level Analysis: …
|
185 |
+
5. Predict & Act: …
|
186 |
+
""",
|
187 |
+
file_name="strategy.md",
|
188 |
+
mime="text/markdown",
|
189 |
+
)
|