Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,189 +1,269 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
import plotly.express as px
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
from statsmodels.tsa.arima.model import ARIMA
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
else:
|
19 |
-
return pd.read_csv(uploaded)
|
20 |
-
except Exception as e:
|
21 |
-
raise st.Error(f"Error parsing file: {e}")
|
22 |
-
|
23 |
-
# โโ Helpers for SQL database โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
24 |
-
SUPPORTED_ENGINES = ["postgresql", "mysql", "mssql+pyodbc", "oracle+cx_oracle"]
|
25 |
-
@st.cache_data
|
26 |
-
def list_tables(connection_string):
|
27 |
-
engine = create_engine(connection_string)
|
28 |
-
return engine.table_names()
|
29 |
-
|
30 |
-
@st.cache_data
|
31 |
-
def fetch_table(connection_string, table_name):
|
32 |
-
engine = create_engine(connection_string)
|
33 |
-
return pd.read_sql_table(table_name, engine)
|
34 |
-
|
35 |
-
# โโ Streamlit page setup โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
36 |
-
st.set_page_config(
|
37 |
-
page_title="BizIntel AI Ultra",
|
38 |
-
layout="wide",
|
39 |
-
initial_sidebar_state="expanded",
|
40 |
)
|
41 |
-
|
42 |
-
|
43 |
-
#
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
st.
|
113 |
-
st.
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
try:
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
labels={metric_col: metric_col, "forecast": "Forecast"},
|
143 |
-
title=f"{metric_col} & 90-Day Forecast",
|
144 |
-
)
|
145 |
-
st.plotly_chart(fig_fc, use_container_width=True)
|
146 |
except Exception as e:
|
147 |
-
st.
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
2.
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
""
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py โ BizIntelย AIย Ultraย v2
|
2 |
+
# =============================================================
|
3 |
+
# CSVย /ย Excelย /ย DB ingestion โข Trend + ARIMA forecast (90ย d or 3ย steps)
|
4 |
+
# Confidence bands โข Model explainability โข Geminiย 1.5 Pro strategy
|
5 |
+
# Safe Plotly writes -> /tmp โข KPI cards โข Optional EDA visuals
|
6 |
+
# =============================================================
|
7 |
+
|
8 |
+
import os, tempfile, warnings
|
9 |
+
from typing import List
|
10 |
+
|
11 |
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import streamlit as st
|
14 |
+
import plotly.graph_objects as go
|
|
|
|
|
15 |
from statsmodels.tsa.arima.model import ARIMA
|
16 |
+
from statsmodels.graphics.tsaplots import plot_acf
|
17 |
+
from statsmodels.tsa.seasonal import seasonal_decompose
|
18 |
+
from statsmodels.tools.sm_exceptions import ConvergenceWarning
|
19 |
+
import google.generativeai as genai
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
|
22 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
23 |
+
# 0) Plotly safe write โ /tmp
|
24 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
25 |
+
TMP = tempfile.gettempdir()
|
26 |
+
orig_write = go.Figure.write_image
|
27 |
+
go.Figure.write_image = lambda self, p, *a, **k: orig_write(
|
28 |
+
self, os.path.join(TMP, os.path.basename(p)), *a, **k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
30 |
+
|
31 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
32 |
+
# 1) Local helpers & DB connector
|
33 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
34 |
+
from tools.csv_parser import parse_csv_tool
|
35 |
+
from tools.plot_generator import plot_metric_tool
|
36 |
+
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool
|
37 |
+
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
|
38 |
+
|
39 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
40 |
+
# 2) Gemini 1.5ย Pro
|
41 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
42 |
+
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
|
43 |
+
gemini = genai.GenerativeModel(
|
44 |
+
"gemini-1.5-pro-latest",
|
45 |
+
generation_config=dict(temperature=0.7, top_p=0.9, response_mime_type="text/plain"),
|
46 |
+
)
|
47 |
+
|
48 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
49 |
+
# 3) Streamlit setup
|
50 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
51 |
+
st.set_page_config(page_title="BizIntelย AIย Ultra", layout="wide")
|
52 |
+
st.title("๐ย BizIntelย AIย Ultraย โ Advanced Analyticsย +ย Geminiย 1.5ย Pro")
|
53 |
+
|
54 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
55 |
+
# 4) Data source
|
56 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
57 |
+
choice = st.radio("Select data source", ["Upload CSVย /ย Excel", "Connect to SQL Database"])
|
58 |
+
csv_path: str | None = None
|
59 |
+
|
60 |
+
if choice.startswith("Upload"):
|
61 |
+
up = st.file_uploader("CSVย orย Excelย (โคโฏ500โฏMB)", type=["csv","xlsx","xls"])
|
62 |
+
if up:
|
63 |
+
tmp = os.path.join(TMP, up.name)
|
64 |
+
with open(tmp, "wb") as f: f.write(up.read())
|
65 |
+
if up.name.lower().endswith(".csv"):
|
66 |
+
csv_path = tmp
|
67 |
+
else:
|
68 |
+
try:
|
69 |
+
pd.read_excel(tmp, sheet_name=0).to_csv(tmp+".csv", index=False)
|
70 |
+
csv_path = tmp+".csv"
|
71 |
+
except Exception as e:
|
72 |
+
st.error(f"Excel parse failed: {e}")
|
73 |
+
else:
|
74 |
+
eng = st.selectbox("DB engine", SUPPORTED_ENGINES)
|
75 |
+
conn = st.text_input("SQLAlchemyย connection string")
|
76 |
+
if conn:
|
77 |
+
try:
|
78 |
+
tbl = st.selectbox("Table", list_tables(conn))
|
79 |
+
if st.button("Fetch table"):
|
80 |
+
csv_path = fetch_data_from_db(conn, tbl)
|
81 |
+
st.success(f"Fetched **{tbl}**")
|
82 |
+
except Exception as e:
|
83 |
+
st.error(f"DB error: {e}")
|
84 |
+
|
85 |
+
if not csv_path:
|
86 |
+
st.stop()
|
87 |
+
|
88 |
+
with open(csv_path, "rb") as f:
|
89 |
+
st.download_button("โฌ๏ธย Download working CSV", f, file_name=os.path.basename(csv_path))
|
90 |
+
|
91 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
92 |
+
# 5) Column selectors
|
93 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
94 |
+
df_head = pd.read_csv(csv_path, nrows=5)
|
95 |
+
st.dataframe(df_head)
|
96 |
+
|
97 |
+
date_col = st.selectbox("Date/time column", df_head.columns)
|
98 |
+
numeric_cols = df_head.select_dtypes("number").columns.tolist()
|
99 |
+
metric_options = [c for c in numeric_cols if c != date_col]
|
100 |
+
if not metric_options:
|
101 |
+
st.error("No numeric columns available apart from the date column.")
|
102 |
+
st.stop()
|
103 |
+
metric_col = st.selectbox("Numeric metric column", metric_options)
|
104 |
+
|
105 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
106 |
+
# 6) Summary & trend chart
|
107 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
108 |
+
summary = parse_csv_tool(csv_path)
|
109 |
+
trend_fig = plot_metric_tool(csv_path, date_col, metric_col)
|
110 |
+
if isinstance(trend_fig, go.Figure):
|
111 |
+
st.subheader("๐ย Trend")
|
112 |
+
st.plotly_chart(trend_fig, use_container_width=True)
|
113 |
+
else:
|
114 |
+
st.warning(trend_fig)
|
115 |
+
|
116 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
117 |
+
# 7) Robust ARIMA + explainability
|
118 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
119 |
+
def build_series(path, dcol, vcol):
|
120 |
+
df = pd.read_csv(path, usecols=[dcol, vcol])
|
121 |
+
df[dcol] = pd.to_datetime(df[dcol], errors="coerce")
|
122 |
+
df[vcol] = pd.to_numeric(df[vcol], errors="coerce")
|
123 |
+
df = df.dropna(subset=[dcol, vcol]).sort_values(dcol)
|
124 |
+
if df.empty or df[dcol].nunique() < 2:
|
125 |
+
raise ValueError("Need โฅโฏ2 valid timestamps.")
|
126 |
+
s = df.set_index(dcol)[vcol].groupby(level=0).mean().sort_index()
|
127 |
+
freq = pd.infer_freq(s.index) or "D"
|
128 |
+
s = s.asfreq(freq).interpolate()
|
129 |
+
return s, freq
|
130 |
+
|
131 |
+
@st.cache_data(show_spinner="Fitting ARIMAโฆ")
|
132 |
+
def fit_arima(series):
|
133 |
+
warnings.simplefilter("ignore", ConvergenceWarning)
|
134 |
+
model = ARIMA(series, order=(1,1,1))
|
135 |
+
return model.fit()
|
136 |
+
|
137 |
+
try:
|
138 |
+
series, freq = build_series(csv_path, date_col, metric_col)
|
139 |
+
horizon = 90 if freq == "D" else 3
|
140 |
+
res = fit_arima(series)
|
141 |
+
fc = res.get_forecast(steps=horizon)
|
142 |
+
forecast = fc.predicted_mean
|
143 |
+
ci = fc.conf_int()
|
144 |
+
except Exception as e:
|
145 |
+
st.subheader(f"๐ฎย {metric_col}ย Forecast")
|
146 |
+
st.warning(f"Forecast failed: {e}")
|
147 |
+
series = forecast = ci = None
|
148 |
+
|
149 |
+
if forecast is not None:
|
150 |
+
# Plot with CI
|
151 |
+
fig = go.Figure()
|
152 |
+
fig.add_scatter(x=series.index, y=series, mode="lines", name=metric_col)
|
153 |
+
fig.add_scatter(x=forecast.index, y=forecast, mode="lines+markers", name="Forecast")
|
154 |
+
fig.add_scatter(x=ci.index, y=ci.iloc[:,1], mode="lines",
|
155 |
+
line=dict(width=0), showlegend=False)
|
156 |
+
fig.add_scatter(x=ci.index, y=ci.iloc[:,0], mode="lines",
|
157 |
+
line=dict(width=0), fill="tonexty",
|
158 |
+
fillcolor="rgba(255,0,0,0.25)", showlegend=False)
|
159 |
+
fig.update_layout(title=f"{metric_col} Forecast ({horizon}ย steps)",
|
160 |
+
template="plotly_dark", xaxis_title=date_col,
|
161 |
+
yaxis_title=metric_col)
|
162 |
+
st.subheader(f"๐ฎย {metric_col}ย Forecast")
|
163 |
+
st.plotly_chart(fig, use_container_width=True)
|
164 |
+
|
165 |
+
# ---------------- summary & interpretation ----------------
|
166 |
+
st.subheader("๐ย Model Summary")
|
167 |
+
st.code(res.summary().as_text(), language="text")
|
168 |
+
|
169 |
+
st.subheader("๐ย Coefficient Interpretation")
|
170 |
+
ar = res.arparams
|
171 |
+
ma = res.maparams
|
172 |
+
interp: List[str] = []
|
173 |
+
if ar.size:
|
174 |
+
interp.append(f"โขย AR(1)ย ={ar[0]:.2f} โ "
|
175 |
+
f"{'strong' if abs(ar[0])>0.5 else 'moderate'} "
|
176 |
+
"persistence in the series.")
|
177 |
+
if ma.size:
|
178 |
+
interp.append(f"โขย MA(1)ย ={ma[0]:.2f} โ "
|
179 |
+
f"{'large' if abs(ma[0])>0.5 else 'modest'} "
|
180 |
+
"shock adjustment.")
|
181 |
+
st.markdown("\n".join(interp) or "N/A")
|
182 |
+
|
183 |
+
# ---------------- Residual ACF ----------------
|
184 |
+
st.subheader("๐ย Residual Autocorrelation (ACF)")
|
185 |
+
plt.figure(figsize=(6,3))
|
186 |
+
plot_acf(res.resid.dropna(), lags=30, alpha=0.05)
|
187 |
+
acf_png = os.path.join(TMP, "acf.png")
|
188 |
+
plt.tight_layout()
|
189 |
+
plt.savefig(acf_png, dpi=120)
|
190 |
+
plt.close()
|
191 |
+
st.image(acf_png, use_container_width=True)
|
192 |
+
|
193 |
+
# ---------------- Backโtest ----------------
|
194 |
+
k = max(int(len(series)*0.2), 10)
|
195 |
+
train, test = series[:-k], series[-k:]
|
196 |
+
bt_res = ARIMA(train, order=(1,1,1)).fit()
|
197 |
+
bt_pred = bt_res.forecast(k)
|
198 |
+
mape = (abs(bt_pred - test)/test).mean()*100
|
199 |
+
rmse = np.sqrt(((bt_pred - test)**2).mean())
|
200 |
+
|
201 |
+
st.subheader("๐งชย Backโtest (last 20โฏ%)")
|
202 |
+
colA, colB = st.columns(2)
|
203 |
+
colA.metric("MAPE", f"{mape:.2f}ย %")
|
204 |
+
colB.metric("RMSE", f"{rmse:,.0f}")
|
205 |
+
|
206 |
+
# ---------------- Optional seasonal decomposition -------
|
207 |
+
with st.expander("Seasonal Decomposition"):
|
208 |
try:
|
209 |
+
period = {"D":7, "H":24, "M":12}.get(freq, None)
|
210 |
+
if period:
|
211 |
+
dec = seasonal_decompose(series, period=period, model="additive")
|
212 |
+
for comp in ["trend","seasonal","resid"]:
|
213 |
+
st.line_chart(getattr(dec, comp), height=150)
|
214 |
+
else:
|
215 |
+
st.info("Frequency not suited for decomposition.")
|
|
|
|
|
|
|
|
|
216 |
except Exception as e:
|
217 |
+
st.info(f"Decomposition failed: {e}")
|
218 |
+
|
219 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
220 |
+
# 8) Gemini strategy report
|
221 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
222 |
+
prompt = (
|
223 |
+
"You are **BizIntel Strategist AI**.\n\n"
|
224 |
+
f"### Dataset Summary\n```\n{summary}\n```\n\n"
|
225 |
+
f"### {metric_col} Forecast\n```\n"
|
226 |
+
f"{forecast.to_string() if forecast is not None else 'N/A'}\n```\n\n"
|
227 |
+
"Craft a Markdown report:\n"
|
228 |
+
"1. Five insights\n2. Three actionable strategies\n"
|
229 |
+
"3. Risksย / anomalies\n4. Extra visuals to consider."
|
230 |
+
)
|
231 |
+
with st.spinner("Gemini generating strategyโฆ"):
|
232 |
+
md = gemini.generate_content(prompt).text
|
233 |
+
st.subheader("๐ย Strategyย Recommendationsย (Geminiย 1.5ย Pro)")
|
234 |
+
st.markdown(md)
|
235 |
+
st.download_button("โฌ๏ธย Downloadย Strategy (.md)", md, file_name="strategy.md")
|
236 |
+
|
237 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
238 |
+
# 9) KPI cards + detailed stats + optional EDA (unchanged)
|
239 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
240 |
+
fulldf = pd.read_csv(csv_path, low_memory=False)
|
241 |
+
rows, cols = fulldf.shape
|
242 |
+
miss_pct = fulldf.isna().mean().mean()*100
|
243 |
+
|
244 |
+
st.markdown("---")
|
245 |
+
st.subheader("๐ย Datasetย Overview")
|
246 |
+
c1,c2,c3 = st.columns(3)
|
247 |
+
c1.metric("Rows", f"{rows:,}")
|
248 |
+
c2.metric("Columns", cols)
|
249 |
+
c3.metric("Missingย %", f"{miss_pct:.1f}%")
|
250 |
+
|
251 |
+
with st.expander("Descriptiveย Statistics"):
|
252 |
+
st.dataframe(fulldf.describe().T.style.format(precision=2).background_gradient("Blues"),
|
253 |
+
use_container_width=True)
|
254 |
+
|
255 |
+
st.markdown("---")
|
256 |
+
st.subheader("๐ย Optionalย Exploratoryย Visuals")
|
257 |
+
num_cols = fulldf.select_dtypes("number").columns.tolist()
|
258 |
+
|
259 |
+
if st.checkbox("Histogram"):
|
260 |
+
st.plotly_chart(histogram_tool(csv_path, st.selectbox("Var", num_cols, key="hist")),
|
261 |
+
use_container_width=True)
|
262 |
+
|
263 |
+
if st.checkbox("Scatterย Matrix"):
|
264 |
+
sel = st.multiselect("Columns", num_cols, default=num_cols[:3])
|
265 |
+
if sel:
|
266 |
+
st.plotly_chart(scatter_matrix_tool(csv_path, sel), use_container_width=True)
|
267 |
+
|
268 |
+
if st.checkbox("Correlationย Heatโmap"):
|
269 |
+
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)
|