Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,167 @@
|
|
1 |
-
# app.py — BizIntel AI Ultra
|
|
|
|
|
2 |
|
3 |
import os
|
4 |
import tempfile
|
|
|
|
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
import google.generativeai as genai
|
8 |
import plotly.graph_objects as go
|
9 |
|
10 |
from tools.csv_parser import parse_csv_tool
|
11 |
-
from tools.plot_generator import plot_sales_tool
|
12 |
-
from tools.forecaster import forecast_tool
|
13 |
from tools.visuals import (
|
14 |
histogram_tool,
|
15 |
scatter_matrix_tool,
|
16 |
corr_heatmap_tool,
|
17 |
)
|
|
|
18 |
|
19 |
# ──────────────────────────────────────────────────────────────
|
20 |
-
#
|
21 |
# ──────────────────────────────────────────────────────────────
|
22 |
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
|
23 |
gemini = genai.GenerativeModel(
|
24 |
"gemini-1.5-pro-latest",
|
25 |
-
generation_config={
|
26 |
-
"temperature": 0.7,
|
27 |
-
"top_p": 0.9,
|
28 |
-
"response_mime_type": "text/plain", # must be allowed type
|
29 |
-
},
|
30 |
)
|
31 |
|
32 |
# ──────────────────────────────────────────────────────────────
|
33 |
-
#
|
34 |
# ──────────────────────────────────────────────────────────────
|
35 |
-
st.set_page_config(page_title="BizIntel
|
36 |
-
st.title("📊 BizIntel AI Ultra – Advanced Analytics")
|
37 |
|
38 |
TEMP_DIR = tempfile.gettempdir()
|
39 |
|
40 |
# ──────────────────────────────────────────────────────────────
|
41 |
-
#
|
42 |
# ──────────────────────────────────────────────────────────────
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
st.stop()
|
47 |
|
48 |
-
|
49 |
-
with open(csv_path, "
|
50 |
-
|
51 |
-
st.success("CSV saved ✅")
|
52 |
|
53 |
-
#
|
|
|
|
|
54 |
df_preview = pd.read_csv(csv_path, nrows=5)
|
55 |
st.dataframe(df_preview)
|
|
|
56 |
date_col = st.selectbox("Select date/time column for forecasting", df_preview.columns)
|
57 |
|
58 |
# ──────────────────────────────────────────────────────────────
|
59 |
-
#
|
60 |
# ──────────────────────────────────────────────────────────────
|
61 |
-
with st.spinner("
|
62 |
summary_text = parse_csv_tool(csv_path)
|
63 |
|
64 |
-
with st.spinner("
|
65 |
sales_fig = plot_sales_tool(csv_path, date_col=date_col)
|
66 |
|
67 |
-
# Show chart or warn
|
68 |
if isinstance(sales_fig, go.Figure):
|
69 |
st.plotly_chart(sales_fig, use_container_width=True)
|
70 |
-
else:
|
71 |
st.warning(sales_fig)
|
72 |
|
73 |
-
with st.spinner("
|
74 |
-
forecast_text = forecast_tool(csv_path, date_col=date_col)
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
#
|
77 |
if os.path.exists("forecast_plot.png"):
|
78 |
st.image("forecast_plot.png", caption="Sales Forecast", use_column_width=True)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# ──────────────────────────────────────────────────────────────
|
81 |
-
#
|
82 |
# ──────────────────────────────────────────────────────────────
|
83 |
prompt = (
|
84 |
f"You are **BizIntel Strategist AI**.\n\n"
|
85 |
-
|
86 |
-
f"
|
|
|
|
|
87 |
"Return **Markdown** with:\n"
|
88 |
-
"1. Five key insights
|
89 |
"2. Three actionable strategies (with expected impact)\n"
|
90 |
"3. Risk factors or anomalies\n"
|
91 |
"4. Suggested additional visuals\n"
|
92 |
)
|
93 |
|
94 |
st.subheader("🚀 Strategy Recommendations (Gemini 1.5 Pro)")
|
95 |
-
with st.spinner("
|
96 |
strategy_md = gemini.generate_content(prompt).text
|
97 |
st.markdown(strategy_md)
|
98 |
|
|
|
|
|
|
|
99 |
# ──────────────────────────────────────────────────────────────
|
100 |
-
#
|
101 |
# ──────────────────────────────────────────────────────────────
|
102 |
st.markdown("---")
|
103 |
st.subheader("🔍 Optional Exploratory Visuals")
|
104 |
|
105 |
num_cols = df_preview.select_dtypes("number").columns
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
fig_hist = histogram_tool(csv_path, hist_col)
|
111 |
-
st.plotly_chart(fig_hist, use_container_width=True)
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
)
|
118 |
-
if mult_cols:
|
119 |
-
fig_scatter = scatter_matrix_tool(csv_path, mult_cols)
|
120 |
-
st.plotly_chart(fig_scatter, use_container_width=True)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
fig_corr = corr_heatmap_tool(csv_path)
|
125 |
-
st.plotly_chart(fig_corr, use_container_width=True)
|
126 |
|
127 |
# ──────────────────────────────────────���───────────────────────
|
128 |
-
#
|
129 |
# ──────────────────────────────────────────────────────────────
|
130 |
st.markdown("---")
|
131 |
-
st.subheader("📑 CSV Summary (
|
132 |
st.text(summary_text)
|
|
|
1 |
+
# app.py — BizIntel AI Ultra v2
|
2 |
+
# Features: CSV upload, SQL DB fetch, interactive Plotly, Gemini 1.5 Pro,
|
3 |
+
# optional EDA, download buttons.
|
4 |
|
5 |
import os
|
6 |
import tempfile
|
7 |
+
from io import StringIO, BytesIO
|
8 |
+
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
import google.generativeai as genai
|
12 |
import plotly.graph_objects as go
|
13 |
|
14 |
from tools.csv_parser import parse_csv_tool
|
15 |
+
from tools.plot_generator import plot_sales_tool
|
16 |
+
from tools.forecaster import forecast_tool # returns text & PNG; we’ll also grab df
|
17 |
from tools.visuals import (
|
18 |
histogram_tool,
|
19 |
scatter_matrix_tool,
|
20 |
corr_heatmap_tool,
|
21 |
)
|
22 |
+
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
|
23 |
|
24 |
# ──────────────────────────────────────────────────────────────
|
25 |
+
# Gemini 1.5‑Pro
|
26 |
# ──────────────────────────────────────────────────────────────
|
27 |
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
|
28 |
gemini = genai.GenerativeModel(
|
29 |
"gemini-1.5-pro-latest",
|
30 |
+
generation_config={"temperature": 0.7, "top_p": 0.9, "response_mime_type": "text/plain"},
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
|
33 |
# ──────────────────────────────────────────────────────────────
|
34 |
+
# Streamlit page
|
35 |
# ──────────────────────────────────────────────────────────────
|
36 |
+
st.set_page_config(page_title="BizIntel AI Ultra", layout="wide")
|
37 |
+
st.title("📊 BizIntel AI Ultra – Advanced Analytics + Gemini 1.5 Pro")
|
38 |
|
39 |
TEMP_DIR = tempfile.gettempdir()
|
40 |
|
41 |
# ──────────────────────────────────────────────────────────────
|
42 |
+
# 1. CHOOSE DATA SOURCE
|
43 |
# ──────────────────────────────────────────────────────────────
|
44 |
+
data_source = st.radio("Select data source", ["Upload CSV", "Connect to SQL Database"])
|
45 |
+
csv_path: str | None = None
|
46 |
+
|
47 |
+
if data_source == "Upload CSV":
|
48 |
+
csv_file = st.file_uploader("Upload CSV (≤ 200 MB)", type=["csv"])
|
49 |
+
if csv_file:
|
50 |
+
csv_path = os.path.join(TEMP_DIR, csv_file.name)
|
51 |
+
with open(csv_path, "wb") as f:
|
52 |
+
f.write(csv_file.read())
|
53 |
+
st.success("CSV saved ✅")
|
54 |
+
|
55 |
+
elif data_source == "Connect to SQL Database":
|
56 |
+
engine = st.selectbox("DB engine", SUPPORTED_ENGINES)
|
57 |
+
conn_str = st.text_input("SQLAlchemy connection string")
|
58 |
+
if conn_str:
|
59 |
+
try:
|
60 |
+
tables = list_tables(conn_str)
|
61 |
+
except Exception as e:
|
62 |
+
st.error(f"Connection failed: {e}")
|
63 |
+
st.stop()
|
64 |
+
|
65 |
+
table = st.selectbox("Select table", tables)
|
66 |
+
if st.button("Fetch table"):
|
67 |
+
csv_path = fetch_data_from_db(conn_str, table)
|
68 |
+
st.success(f"Fetched ‘{table}’ into CSV ✅")
|
69 |
+
|
70 |
+
# Stop if we still don’t have a CSV
|
71 |
+
if csv_path is None:
|
72 |
st.stop()
|
73 |
|
74 |
+
# Offer original CSV download
|
75 |
+
with open(csv_path, "rb") as f:
|
76 |
+
st.download_button("⬇️ Download original CSV", f, file_name=os.path.basename(csv_path))
|
|
|
77 |
|
78 |
+
# ──────────────────────────────────────────────────────────────
|
79 |
+
# 2. PREVIEW + DATE COL
|
80 |
+
# ──────────────────────────────────────────────────────────────
|
81 |
df_preview = pd.read_csv(csv_path, nrows=5)
|
82 |
st.dataframe(df_preview)
|
83 |
+
|
84 |
date_col = st.selectbox("Select date/time column for forecasting", df_preview.columns)
|
85 |
|
86 |
# ──────────────────────────────────────────────────────────────
|
87 |
+
# 3. RUN LOCAL TOOLS
|
88 |
# ──────────────────────────────────────────────────────────────
|
89 |
+
with st.spinner("Parsing CSV…"):
|
90 |
summary_text = parse_csv_tool(csv_path)
|
91 |
|
92 |
+
with st.spinner("Generating sales trend…"):
|
93 |
sales_fig = plot_sales_tool(csv_path, date_col=date_col)
|
94 |
|
|
|
95 |
if isinstance(sales_fig, go.Figure):
|
96 |
st.plotly_chart(sales_fig, use_container_width=True)
|
97 |
+
else:
|
98 |
st.warning(sales_fig)
|
99 |
|
100 |
+
with st.spinner("Forecasting…"):
|
101 |
+
forecast_text = forecast_tool(csv_path, date_col=date_col) # PNG created
|
102 |
+
# Also capture forecast df from statsmodels if you return it (optional)
|
103 |
+
try:
|
104 |
+
forecast_df = pd.read_csv(StringIO(forecast_text))
|
105 |
+
except Exception:
|
106 |
+
forecast_df = None
|
107 |
|
108 |
+
# Forecast plot preview
|
109 |
if os.path.exists("forecast_plot.png"):
|
110 |
st.image("forecast_plot.png", caption="Sales Forecast", use_column_width=True)
|
111 |
|
112 |
+
# Download forecast CSV if df exists
|
113 |
+
if forecast_df is not None and not forecast_df.empty:
|
114 |
+
buf = StringIO()
|
115 |
+
forecast_df.to_csv(buf, index=False)
|
116 |
+
st.download_button("⬇️ Download Forecast CSV", buf.getvalue(), file_name="forecast.csv")
|
117 |
+
|
118 |
# ──────────────────────────────────────────────────────────────
|
119 |
+
# 4. GEMINI STRATEGY
|
120 |
# ──────────────────────────────────────────────────────────────
|
121 |
prompt = (
|
122 |
f"You are **BizIntel Strategist AI**.\n\n"
|
123 |
+
"### CSV Summary\n"
|
124 |
+
f"```\n{summary_text}\n```\n\n"
|
125 |
+
"### Forecast Output\n"
|
126 |
+
f"```\n{forecast_text}\n```\n\n"
|
127 |
"Return **Markdown** with:\n"
|
128 |
+
"1. Five key insights\n"
|
129 |
"2. Three actionable strategies (with expected impact)\n"
|
130 |
"3. Risk factors or anomalies\n"
|
131 |
"4. Suggested additional visuals\n"
|
132 |
)
|
133 |
|
134 |
st.subheader("🚀 Strategy Recommendations (Gemini 1.5 Pro)")
|
135 |
+
with st.spinner("Generating insights…"):
|
136 |
strategy_md = gemini.generate_content(prompt).text
|
137 |
st.markdown(strategy_md)
|
138 |
|
139 |
+
# Download strategy as Markdown
|
140 |
+
st.download_button("⬇️ Download Strategy (.md)", strategy_md, file_name="strategy.md")
|
141 |
+
|
142 |
# ──────────────────────────────────────────────────────────────
|
143 |
+
# 5. OPTIONAL EXPLORATORY VISUALS
|
144 |
# ──────────────────────────────────────────────────────────────
|
145 |
st.markdown("---")
|
146 |
st.subheader("🔍 Optional Exploratory Visuals")
|
147 |
|
148 |
num_cols = df_preview.select_dtypes("number").columns
|
149 |
|
150 |
+
if st.checkbox("Histogram"):
|
151 |
+
col = st.selectbox("Variable", num_cols, key="hist")
|
152 |
+
st.plotly_chart(histogram_tool(csv_path, col), use_container_width=True)
|
|
|
|
|
153 |
|
154 |
+
if st.checkbox("Scatter‑matrix"):
|
155 |
+
cols = st.multiselect("Choose up to 5 columns", num_cols, default=num_cols[:3])
|
156 |
+
if cols:
|
157 |
+
st.plotly_chart(scatter_matrix_tool(csv_path, cols), use_container_width=True)
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
if st.checkbox("Correlation heat‑map"):
|
160 |
+
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)
|
|
|
|
|
161 |
|
162 |
# ──────────────────────────────────────���───────────────────────
|
163 |
+
# 6. FULL SUMMARY
|
164 |
# ──────────────────────────────────────────────────────────────
|
165 |
st.markdown("---")
|
166 |
+
st.subheader("📑 CSV Summary (stats)")
|
167 |
st.text(summary_text)
|