Spaces:
Sleeping
Sleeping
Update tools/forecaster.py
Browse files- tools/forecaster.py +30 -25
tools/forecaster.py
CHANGED
@@ -1,30 +1,13 @@
|
|
1 |
import pandas as pd
|
2 |
-
import
|
3 |
from statsmodels.tsa.arima.model import ARIMA
|
4 |
|
5 |
-
def forecast_tool(file_path: str, date_col: str
|
6 |
"""
|
7 |
-
Forecast
|
8 |
-
• If date_col is provided, use it.
|
9 |
-
• Otherwise auto‑detect the first column that can be parsed as dates.
|
10 |
-
|
11 |
-
Returns human‑readable summary and saves 'forecast_plot.png'.
|
12 |
"""
|
13 |
df = pd.read_csv(file_path)
|
14 |
|
15 |
-
# Auto‑detect date column if not specified
|
16 |
-
if date_col is None:
|
17 |
-
for col in df.columns:
|
18 |
-
try:
|
19 |
-
pd.to_datetime(df[col])
|
20 |
-
date_col = col
|
21 |
-
break
|
22 |
-
except Exception:
|
23 |
-
continue
|
24 |
-
if date_col is None:
|
25 |
-
return "❌ No parseable date column found."
|
26 |
-
|
27 |
-
# Parse the date column
|
28 |
try:
|
29 |
df[date_col] = pd.to_datetime(df[date_col])
|
30 |
except Exception:
|
@@ -38,8 +21,30 @@ def forecast_tool(file_path: str, date_col: str | None = None) -> str:
|
|
38 |
model_fit = model.fit()
|
39 |
forecast = model_fit.forecast(steps=3)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
import plotly.graph_objects as go
|
3 |
from statsmodels.tsa.arima.model import ARIMA
|
4 |
|
5 |
+
def forecast_tool(file_path: str, date_col: str) -> str:
|
6 |
"""
|
7 |
+
Forecast next 3 periods of 'Sales'. Returns text summary and saves forecast_plot.png.
|
|
|
|
|
|
|
|
|
8 |
"""
|
9 |
df = pd.read_csv(file_path)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
try:
|
12 |
df[date_col] = pd.to_datetime(df[date_col])
|
13 |
except Exception:
|
|
|
21 |
model_fit = model.fit()
|
22 |
forecast = model_fit.forecast(steps=3)
|
23 |
|
24 |
+
# Interactive Plotly forecast with confidence interval
|
25 |
+
conf_int = model_fit.get_forecast(steps=3).conf_int()
|
26 |
+
future_index = forecast.index
|
27 |
+
|
28 |
+
fig = go.Figure()
|
29 |
+
fig.add_scatter(x=df.index, y=df["Sales"], mode="lines", name="Sales")
|
30 |
+
fig.add_scatter(x=future_index, y=forecast, mode="lines", name="Forecast")
|
31 |
+
fig.add_scatter(
|
32 |
+
x=future_index,
|
33 |
+
y=conf_int.iloc[:, 0],
|
34 |
+
mode="lines",
|
35 |
+
fill=None,
|
36 |
+
line=dict(width=0),
|
37 |
+
showlegend=False,
|
38 |
+
)
|
39 |
+
fig.add_scatter(
|
40 |
+
x=future_index,
|
41 |
+
y=conf_int.iloc[:, 1],
|
42 |
+
mode="lines",
|
43 |
+
fill="tonexty",
|
44 |
+
name="95% CI",
|
45 |
+
line=dict(width=0),
|
46 |
+
)
|
47 |
+
fig.update_layout(title="Sales Forecast", template="plotly_dark")
|
48 |
+
fig.write_image("forecast_plot.png")
|
49 |
+
|
50 |
+
return forecast.to_frame(name="Forecast").to_string()
|