Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
-
# app.py β BizIntelΒ AIΒ UltraΒ
|
| 2 |
-
# Features: CSV upload, SQL DB fetch, interactive Plotly, GeminiΒ 1.5β―Pro,
|
| 3 |
-
# optional EDA, download buttons.
|
| 4 |
|
| 5 |
import os
|
| 6 |
import tempfile
|
| 7 |
-
from io import StringIO
|
| 8 |
|
| 9 |
import pandas as pd
|
| 10 |
import streamlit as st
|
|
@@ -13,117 +11,100 @@ import plotly.graph_objects as go
|
|
| 13 |
|
| 14 |
from tools.csv_parser import parse_csv_tool
|
| 15 |
from tools.plot_generator import plot_sales_tool
|
| 16 |
-
from tools.forecaster import forecast_tool
|
| 17 |
-
from tools.visuals import
|
| 18 |
-
histogram_tool,
|
| 19 |
-
scatter_matrix_tool,
|
| 20 |
-
corr_heatmap_tool,
|
| 21 |
-
)
|
| 22 |
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
|
| 23 |
|
| 24 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 25 |
-
#
|
| 26 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 27 |
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
|
| 28 |
gemini = genai.GenerativeModel(
|
| 29 |
"gemini-1.5-pro-latest",
|
| 30 |
-
generation_config={
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
)
|
| 32 |
|
| 33 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 34 |
-
#
|
| 35 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 36 |
st.set_page_config(page_title="BizIntelΒ AIΒ Ultra", layout="wide")
|
| 37 |
-
st.title("π BizIntelΒ AIΒ UltraΒ β Advanced Analytics
|
| 38 |
|
| 39 |
TEMP_DIR = tempfile.gettempdir()
|
| 40 |
|
| 41 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 42 |
-
#
|
| 43 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 44 |
-
|
| 45 |
-
csv_path
|
| 46 |
|
| 47 |
-
if
|
| 48 |
-
|
| 49 |
-
if
|
| 50 |
-
csv_path = os.path.join(TEMP_DIR,
|
| 51 |
with open(csv_path, "wb") as f:
|
| 52 |
-
f.write(
|
| 53 |
st.success("CSV saved β
")
|
| 54 |
|
| 55 |
-
|
| 56 |
engine = st.selectbox("DB engine", SUPPORTED_ENGINES)
|
| 57 |
-
|
| 58 |
-
if
|
| 59 |
try:
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
st.error(f"Connection failed: {e}")
|
| 63 |
st.stop()
|
| 64 |
|
| 65 |
-
table = st.selectbox("Select table", tables)
|
| 66 |
-
if st.button("Fetch table"):
|
| 67 |
-
csv_path = fetch_data_from_db(conn_str, table)
|
| 68 |
-
st.success(f"Fetched β{table}β into CSV β
")
|
| 69 |
-
|
| 70 |
-
# Stop if we still donβt have a CSV
|
| 71 |
if csv_path is None:
|
| 72 |
st.stop()
|
| 73 |
|
| 74 |
-
#
|
| 75 |
with open(csv_path, "rb") as f:
|
| 76 |
-
st.download_button("β¬οΈ
|
| 77 |
|
| 78 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 79 |
-
#
|
| 80 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 81 |
df_preview = pd.read_csv(csv_path, nrows=5)
|
| 82 |
st.dataframe(df_preview)
|
| 83 |
-
|
| 84 |
date_col = st.selectbox("Select date/time column for forecasting", df_preview.columns)
|
| 85 |
|
| 86 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 87 |
-
#
|
| 88 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 89 |
with st.spinner("Parsing CSVβ¦"):
|
| 90 |
summary_text = parse_csv_tool(csv_path)
|
| 91 |
|
| 92 |
with st.spinner("Generating sales trendβ¦"):
|
| 93 |
sales_fig = plot_sales_tool(csv_path, date_col=date_col)
|
| 94 |
-
|
| 95 |
if isinstance(sales_fig, go.Figure):
|
| 96 |
st.plotly_chart(sales_fig, use_container_width=True)
|
| 97 |
else:
|
| 98 |
st.warning(sales_fig)
|
| 99 |
|
| 100 |
with st.spinner("Forecastingβ¦"):
|
| 101 |
-
forecast_text = forecast_tool(csv_path, date_col=date_col)
|
| 102 |
-
|
| 103 |
-
try:
|
| 104 |
-
forecast_df = pd.read_csv(StringIO(forecast_text))
|
| 105 |
-
except Exception:
|
| 106 |
-
forecast_df = None
|
| 107 |
-
|
| 108 |
-
# Forecast plot preview
|
| 109 |
-
if os.path.exists("forecast_plot.png"):
|
| 110 |
-
st.image("forecast_plot.png", caption="Sales Forecast", use_column_width=True)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
buf = StringIO()
|
| 115 |
-
forecast_df.to_csv(buf, index=False)
|
| 116 |
-
st.download_button("β¬οΈ Download Forecast CSV", buf.getvalue(), file_name="forecast.csv")
|
| 117 |
|
| 118 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 119 |
-
#
|
| 120 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 121 |
prompt = (
|
| 122 |
f"You are **BizIntel Strategist AI**.\n\n"
|
| 123 |
-
"### CSV Summary\n"
|
| 124 |
-
f"```\n{
|
| 125 |
-
"### Forecast Output\n"
|
| 126 |
-
f"```\n{forecast_text}\n```\n\n"
|
| 127 |
"Return **Markdown** with:\n"
|
| 128 |
"1. Five key insights\n"
|
| 129 |
"2. Three actionable strategies (with expected impact)\n"
|
|
@@ -135,33 +116,47 @@ st.subheader("π Strategy Recommendations (GeminiΒ 1.5Β Pro)")
|
|
| 135 |
with st.spinner("Generating insightsβ¦"):
|
| 136 |
strategy_md = gemini.generate_content(prompt).text
|
| 137 |
st.markdown(strategy_md)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 143 |
-
#
|
| 144 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 145 |
st.markdown("---")
|
| 146 |
st.subheader("π Optional Exploratory Visuals")
|
| 147 |
|
| 148 |
-
|
| 149 |
|
| 150 |
if st.checkbox("Histogram"):
|
| 151 |
-
|
| 152 |
-
st.plotly_chart(histogram_tool(csv_path,
|
| 153 |
|
| 154 |
if st.checkbox("Scatterβmatrix"):
|
| 155 |
-
|
| 156 |
-
if
|
| 157 |
-
st.plotly_chart(scatter_matrix_tool(csv_path,
|
| 158 |
|
| 159 |
if st.checkbox("Correlation heatβmap"):
|
| 160 |
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)
|
| 161 |
-
|
| 162 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 163 |
-
# 6. FULL SUMMARY
|
| 164 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 165 |
-
st.markdown("---")
|
| 166 |
-
st.subheader("π CSV Summary (stats)")
|
| 167 |
-
st.text(summary_text)
|
|
|
|
| 1 |
+
# app.py β BizIntelΒ AIΒ Ultra (Geminiβ―1.5Β Pro, CSVβ―+β―DB, interactive Plotly, pro summary)
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import os
|
| 4 |
import tempfile
|
| 5 |
+
from io import StringIO
|
| 6 |
|
| 7 |
import pandas as pd
|
| 8 |
import streamlit as st
|
|
|
|
| 11 |
|
| 12 |
from tools.csv_parser import parse_csv_tool
|
| 13 |
from tools.plot_generator import plot_sales_tool
|
| 14 |
+
from tools.forecaster import forecast_tool
|
| 15 |
+
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
|
| 17 |
|
| 18 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 19 |
+
# 1. GEMINI CONFIG
|
| 20 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 21 |
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
|
| 22 |
gemini = genai.GenerativeModel(
|
| 23 |
"gemini-1.5-pro-latest",
|
| 24 |
+
generation_config={
|
| 25 |
+
"temperature": 0.7,
|
| 26 |
+
"top_p": 0.9,
|
| 27 |
+
"response_mime_type": "text/plain",
|
| 28 |
+
},
|
| 29 |
)
|
| 30 |
|
| 31 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 32 |
+
# 2. PAGE SETUP
|
| 33 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 34 |
st.set_page_config(page_title="BizIntelΒ AIΒ Ultra", layout="wide")
|
| 35 |
+
st.title("π BizIntelΒ AIΒ UltraΒ β Advanced Analytics + GeminiΒ 1.5Β Pro")
|
| 36 |
|
| 37 |
TEMP_DIR = tempfile.gettempdir()
|
| 38 |
|
| 39 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 40 |
+
# 3. DATA SOURCE (CSV OR DB)
|
| 41 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 42 |
+
source = st.radio("Select data source", ["Upload CSV", "Connect to SQL Database"])
|
| 43 |
+
csv_path = None
|
| 44 |
|
| 45 |
+
if source == "Upload CSV":
|
| 46 |
+
up = st.file_uploader("Upload CSV (β€β―200β―MB)", type=["csv"])
|
| 47 |
+
if up:
|
| 48 |
+
csv_path = os.path.join(TEMP_DIR, up.name)
|
| 49 |
with open(csv_path, "wb") as f:
|
| 50 |
+
f.write(up.read())
|
| 51 |
st.success("CSV saved β
")
|
| 52 |
|
| 53 |
+
else:
|
| 54 |
engine = st.selectbox("DB engine", SUPPORTED_ENGINES)
|
| 55 |
+
conn = st.text_input("SQLAlchemy connection string")
|
| 56 |
+
if conn:
|
| 57 |
try:
|
| 58 |
+
tbls = list_tables(conn)
|
| 59 |
+
tbl = st.selectbox("Table", tbls)
|
| 60 |
+
if st.button("Fetch table"):
|
| 61 |
+
csv_path = fetch_data_from_db(conn, tbl)
|
| 62 |
+
st.success(f"Fetched **{tbl}** as CSV β
")
|
| 63 |
except Exception as e:
|
| 64 |
st.error(f"Connection failed: {e}")
|
| 65 |
st.stop()
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
if csv_path is None:
|
| 68 |
st.stop()
|
| 69 |
|
| 70 |
+
# Download original CSV
|
| 71 |
with open(csv_path, "rb") as f:
|
| 72 |
+
st.download_button("β¬οΈΒ Download original CSV", f, file_name=os.path.basename(csv_path))
|
| 73 |
|
| 74 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 75 |
+
# 4. PREVIEW & DATE COLUMN
|
| 76 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 77 |
df_preview = pd.read_csv(csv_path, nrows=5)
|
| 78 |
st.dataframe(df_preview)
|
|
|
|
| 79 |
date_col = st.selectbox("Select date/time column for forecasting", df_preview.columns)
|
| 80 |
|
| 81 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 82 |
+
# 5. LOCAL TOOLS: SUMMARY, SALES TREND, FORECAST
|
| 83 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 84 |
with st.spinner("Parsing CSVβ¦"):
|
| 85 |
summary_text = parse_csv_tool(csv_path)
|
| 86 |
|
| 87 |
with st.spinner("Generating sales trendβ¦"):
|
| 88 |
sales_fig = plot_sales_tool(csv_path, date_col=date_col)
|
|
|
|
| 89 |
if isinstance(sales_fig, go.Figure):
|
| 90 |
st.plotly_chart(sales_fig, use_container_width=True)
|
| 91 |
else:
|
| 92 |
st.warning(sales_fig)
|
| 93 |
|
| 94 |
with st.spinner("Forecastingβ¦"):
|
| 95 |
+
forecast_text = forecast_tool(csv_path, date_col=date_col)
|
| 96 |
+
forecast_png = "forecast_plot.png" if os.path.exists("forecast_plot.png") else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
if forecast_png:
|
| 99 |
+
st.image(forecast_png, caption="Sales Forecast", use_container_width=True)
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 102 |
+
# 6. GEMINI STRATEGY
|
| 103 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 104 |
prompt = (
|
| 105 |
f"You are **BizIntel Strategist AI**.\n\n"
|
| 106 |
+
f"### CSV Summary\n```\n{summary_text}\n```\n\n"
|
| 107 |
+
f"### Forecast Output\n```\n{forecast_text}\n```\n\n"
|
|
|
|
|
|
|
| 108 |
"Return **Markdown** with:\n"
|
| 109 |
"1. Five key insights\n"
|
| 110 |
"2. Three actionable strategies (with expected impact)\n"
|
|
|
|
| 116 |
with st.spinner("Generating insightsβ¦"):
|
| 117 |
strategy_md = gemini.generate_content(prompt).text
|
| 118 |
st.markdown(strategy_md)
|
| 119 |
+
st.download_button("β¬οΈΒ Download Strategy (.md)", strategy_md, file_name="strategy.md")
|
| 120 |
+
|
| 121 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 122 |
+
# 7. PROFESSIONAL CSV SUMMARY
|
| 123 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 124 |
+
st.markdown("---")
|
| 125 |
+
st.subheader("π CSV Overview")
|
| 126 |
+
|
| 127 |
+
full_df = pd.read_csv(csv_path)
|
| 128 |
+
total_rows = len(full_df)
|
| 129 |
+
num_cols = len(full_df.columns)
|
| 130 |
+
missing_pct = full_df.isna().mean().mean() * 100
|
| 131 |
+
|
| 132 |
+
c1, c2, c3 = st.columns(3)
|
| 133 |
+
c1.metric("Rows", f"{total_rows:,}")
|
| 134 |
+
c2.metric("Columns", str(num_cols))
|
| 135 |
+
c3.metric("MissingΒ %", f"{missing_pct:.1f}%")
|
| 136 |
|
| 137 |
+
with st.expander("πΒ Detailed descriptive statistics"):
|
| 138 |
+
stats_df = full_df.describe().T.reset_index().rename(columns={"index": "Feature"})
|
| 139 |
+
st.dataframe(
|
| 140 |
+
stats_df.style.format(precision=2).background_gradient(cmap="Blues"),
|
| 141 |
+
use_container_width=True,
|
| 142 |
+
)
|
| 143 |
|
| 144 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 145 |
+
# 8. OPTIONAL EXPLORATORY VISUALS
|
| 146 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 147 |
st.markdown("---")
|
| 148 |
st.subheader("π Optional Exploratory Visuals")
|
| 149 |
|
| 150 |
+
num_cols_only = df_preview.select_dtypes("number").columns
|
| 151 |
|
| 152 |
if st.checkbox("Histogram"):
|
| 153 |
+
hcol = st.selectbox("Variable", num_cols_only, key="hist")
|
| 154 |
+
st.plotly_chart(histogram_tool(csv_path, hcol), use_container_width=True)
|
| 155 |
|
| 156 |
if st.checkbox("Scatterβmatrix"):
|
| 157 |
+
sm_cols = st.multiselect("Choose up to 5 columns", num_cols_only, default=num_cols_only[:3])
|
| 158 |
+
if sm_cols:
|
| 159 |
+
st.plotly_chart(scatter_matrix_tool(csv_path, sm_cols), use_container_width=True)
|
| 160 |
|
| 161 |
if st.checkbox("Correlation heatβmap"):
|
| 162 |
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|