Spaces:
Sleeping
Sleeping
Update tools/plot_generator.py
Browse files- tools/plot_generator.py +19 -23
tools/plot_generator.py
CHANGED
@@ -1,7 +1,9 @@
|
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
import pandas as pd
|
4 |
import plotly.graph_objects as go
|
|
|
5 |
|
6 |
|
7 |
def plot_metric_tool(
|
@@ -12,30 +14,28 @@ def plot_metric_tool(
|
|
12 |
title: str = None,
|
13 |
line_width: int = 2,
|
14 |
marker_size: int = 6
|
15 |
-
):
|
16 |
"""
|
17 |
-
Load CSV or Excel file, parse a time series metric, and return an interactive Plotly Figure
|
18 |
-
|
19 |
|
20 |
Returns:
|
21 |
-
fig
|
|
|
22 |
"""
|
23 |
-
#
|
24 |
ext = os.path.splitext(file_path)[1].lower()
|
25 |
try:
|
26 |
-
if ext in ('.xls', '.xlsx')
|
27 |
-
df = pd.read_excel(file_path)
|
28 |
-
else:
|
29 |
-
df = pd.read_csv(file_path)
|
30 |
except Exception as exc:
|
31 |
return f"β Failed to load file: {exc}"
|
32 |
|
33 |
-
#
|
34 |
missing = [c for c in (date_col, value_col) if c not in df.columns]
|
35 |
if missing:
|
36 |
return f"β Missing column(s): {', '.join(missing)}"
|
37 |
|
38 |
-
#
|
39 |
try:
|
40 |
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
|
41 |
except Exception:
|
@@ -45,7 +45,7 @@ def plot_metric_tool(
|
|
45 |
if df.empty:
|
46 |
return f"β No valid data after cleaning '{date_col}'/'{value_col}'"
|
47 |
|
48 |
-
#
|
49 |
df = (
|
50 |
df[[date_col, value_col]]
|
51 |
.groupby(date_col, as_index=True)
|
@@ -53,7 +53,7 @@ def plot_metric_tool(
|
|
53 |
.sort_index()
|
54 |
)
|
55 |
|
56 |
-
#
|
57 |
fig = go.Figure(
|
58 |
data=[
|
59 |
go.Scatter(
|
@@ -62,30 +62,26 @@ def plot_metric_tool(
|
|
62 |
mode='lines+markers',
|
63 |
line=dict(width=line_width),
|
64 |
marker=dict(size=marker_size),
|
65 |
-
name=value_col
|
66 |
)
|
67 |
]
|
68 |
)
|
69 |
-
plot_title = title or f"{value_col} Trend"
|
70 |
fig.update_layout(
|
71 |
-
title=
|
72 |
xaxis_title=date_col,
|
73 |
yaxis_title=value_col,
|
74 |
template='plotly_dark',
|
75 |
hovermode='x unified'
|
76 |
)
|
77 |
|
78 |
-
#
|
79 |
os.makedirs(output_dir, exist_ok=True)
|
80 |
-
|
81 |
-
|
82 |
-
)
|
83 |
-
img_path = tmpfile.name
|
84 |
-
tmpfile.close()
|
85 |
try:
|
86 |
fig.write_image(img_path, scale=2)
|
87 |
except Exception as exc:
|
88 |
return f"β Failed saving image: {exc}"
|
89 |
|
90 |
-
# 6) Return figure and path for embedding
|
91 |
return fig, img_path
|
|
|
1 |
+
# tools/plot_generator.py
|
2 |
import os
|
3 |
import tempfile
|
4 |
import pandas as pd
|
5 |
import plotly.graph_objects as go
|
6 |
+
from typing import Tuple, Union
|
7 |
|
8 |
|
9 |
def plot_metric_tool(
|
|
|
14 |
title: str = None,
|
15 |
line_width: int = 2,
|
16 |
marker_size: int = 6
|
17 |
+
) -> Union[Tuple[go.Figure, str], str]:
|
18 |
"""
|
19 |
+
Load CSV or Excel file, parse a time series metric, and return an interactive Plotly Figure
|
20 |
+
plus a high-res PNG file path for static embedding.
|
21 |
|
22 |
Returns:
|
23 |
+
- (fig, img_path) on success
|
24 |
+
- error string starting with 'β' on failure
|
25 |
"""
|
26 |
+
# Load data
|
27 |
ext = os.path.splitext(file_path)[1].lower()
|
28 |
try:
|
29 |
+
df = pd.read_excel(file_path) if ext in ('.xls', '.xlsx') else pd.read_csv(file_path)
|
|
|
|
|
|
|
30 |
except Exception as exc:
|
31 |
return f"β Failed to load file: {exc}"
|
32 |
|
33 |
+
# Validate columns
|
34 |
missing = [c for c in (date_col, value_col) if c not in df.columns]
|
35 |
if missing:
|
36 |
return f"β Missing column(s): {', '.join(missing)}"
|
37 |
|
38 |
+
# Parse and clean
|
39 |
try:
|
40 |
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
|
41 |
except Exception:
|
|
|
45 |
if df.empty:
|
46 |
return f"β No valid data after cleaning '{date_col}'/'{value_col}'"
|
47 |
|
48 |
+
# Aggregate duplicates and sort
|
49 |
df = (
|
50 |
df[[date_col, value_col]]
|
51 |
.groupby(date_col, as_index=True)
|
|
|
53 |
.sort_index()
|
54 |
)
|
55 |
|
56 |
+
# Build figure
|
57 |
fig = go.Figure(
|
58 |
data=[
|
59 |
go.Scatter(
|
|
|
62 |
mode='lines+markers',
|
63 |
line=dict(width=line_width),
|
64 |
marker=dict(size=marker_size),
|
65 |
+
name=value_col,
|
66 |
)
|
67 |
]
|
68 |
)
|
|
|
69 |
fig.update_layout(
|
70 |
+
title=title or f"{value_col} Trend",
|
71 |
xaxis_title=date_col,
|
72 |
yaxis_title=value_col,
|
73 |
template='plotly_dark',
|
74 |
hovermode='x unified'
|
75 |
)
|
76 |
|
77 |
+
# Save PNG
|
78 |
os.makedirs(output_dir, exist_ok=True)
|
79 |
+
tmp = tempfile.NamedTemporaryFile(suffix='.png', prefix='trend_', dir=output_dir, delete=False)
|
80 |
+
img_path = tmp.name
|
81 |
+
tmp.close()
|
|
|
|
|
82 |
try:
|
83 |
fig.write_image(img_path, scale=2)
|
84 |
except Exception as exc:
|
85 |
return f"β Failed saving image: {exc}"
|
86 |
|
|
|
87 |
return fig, img_path
|