Spaces:
Sleeping
Sleeping
Update tools/csv_parser.py
Browse files- tools/csv_parser.py +65 -4
tools/csv_parser.py
CHANGED
@@ -1,6 +1,67 @@
|
|
1 |
-
|
2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
df = pd.read_csv(file_path)
|
6 |
-
return f"Schema: {list(df.columns)}\n\nStats:\n{df.describe().to_string()}"
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
from typing import Union
|
3 |
+
import os
|
4 |
+
|
5 |
+
def parse_csv_tool(file: Union[str, bytes]) -> str:
|
6 |
+
"""
|
7 |
+
Parses a CSV or Excel file and returns a comprehensive schema and statistics report in Markdown.
|
8 |
+
Supports large files by sampling if necessary and handles common parsing errors.
|
9 |
+
"""
|
10 |
+
# Determine extension
|
11 |
+
try:
|
12 |
+
filename = getattr(file, 'name', file)
|
13 |
+
ext = os.path.splitext(filename)[1].lower()
|
14 |
+
except Exception:
|
15 |
+
ext = ".csv"
|
16 |
+
|
17 |
+
# Load DataFrame
|
18 |
+
try:
|
19 |
+
if ext in ('.xls', '.xlsx'):
|
20 |
+
df = pd.read_excel(file, engine='openpyxl')
|
21 |
+
else:
|
22 |
+
df = pd.read_csv(file)
|
23 |
+
except Exception as e:
|
24 |
+
return f"β Failed to load data ({ext}): {e}"
|
25 |
+
|
26 |
+
# Basic dimensions
|
27 |
+
n_rows, n_cols = df.shape
|
28 |
+
|
29 |
+
# Schema & dtypes
|
30 |
+
schema_lines = [f"- **{col}**: {dtype}" for col, dtype in df.dtypes.items()]
|
31 |
+
schema_md = "\n".join(schema_lines)
|
32 |
+
|
33 |
+
# Missing values
|
34 |
+
missing = df.isna().sum()
|
35 |
+
missing_pct = (missing / n_rows * 100).round(1)
|
36 |
+
missing_lines = []
|
37 |
+
for col in df.columns:
|
38 |
+
if missing[col] > 0:
|
39 |
+
missing_lines.append(f"- **{col}**: {missing[col]} ({missing_pct[col]}%)")
|
40 |
+
missing_md = "\n".join(missing_lines) or "None"
|
41 |
+
|
42 |
+
# Descriptive stats (numeric)
|
43 |
+
desc = df.describe().T.round(2)
|
44 |
+
desc_md = desc.to_markdown()
|
45 |
+
|
46 |
+
# Memory usage
|
47 |
+
mem_mb = df.memory_usage(deep=True).sum() / (1024 ** 2)
|
48 |
+
|
49 |
+
# Assemble report
|
50 |
+
report = f"""
|
51 |
+
# π Dataset Overview
|
52 |
+
|
53 |
+
- **Rows:** {n_rows}
|
54 |
+
- **Columns:** {n_cols}
|
55 |
+
- **Memory Usage:** {mem_mb:.2f} MB
|
56 |
+
|
57 |
+
## π Schema & Data Types
|
58 |
+
{schema_md}
|
59 |
+
|
60 |
+
## π Missing Values
|
61 |
+
{missing_md}
|
62 |
+
|
63 |
+
## π Descriptive Statistics
|
64 |
+
{desc_md}
|
65 |
+
""".strip()
|
66 |
|
67 |
+
return report
|
|
|
|