Spaces:
Sleeping
Sleeping
Update tools/forecaster.py
Browse files- tools/forecaster.py +29 -35
tools/forecaster.py
CHANGED
@@ -6,61 +6,55 @@ import plotly.graph_objects as go
|
|
6 |
|
7 |
def forecast_metric_tool(file_path: str, date_col: str, value_col: str):
|
8 |
"""
|
9 |
-
Forecast next 3 periods for any numeric metric,
|
10 |
-
|
11 |
"""
|
12 |
-
# 1) Load & parse
|
13 |
df = pd.read_csv(file_path)
|
14 |
try:
|
15 |
df[date_col] = pd.to_datetime(df[date_col])
|
16 |
except Exception:
|
17 |
return f"β Could not parse '{date_col}' as dates."
|
18 |
-
|
19 |
-
# 2) Coerce metric to numeric & drop invalid
|
20 |
df[value_col] = pd.to_numeric(df[value_col], errors="coerce")
|
21 |
df = df.dropna(subset=[date_col, value_col])
|
22 |
-
|
23 |
if df.empty:
|
24 |
return f"β No valid data for '{value_col}'."
|
25 |
-
|
26 |
-
# 3) Sort
|
27 |
-
df = df.sort_values(date_col)
|
28 |
-
|
|
|
|
|
|
|
29 |
freq = pd.infer_freq(df.index)
|
30 |
if freq is None:
|
31 |
-
# fallback to daily
|
32 |
-
freq = "D"
|
33 |
df = df.asfreq(freq)
|
34 |
-
|
35 |
-
#
|
36 |
try:
|
37 |
model = ARIMA(df[value_col], order=(1, 1, 1))
|
38 |
model_fit = model.fit()
|
39 |
except Exception as e:
|
40 |
return f"β ARIMA fitting failed: {e}"
|
41 |
-
|
42 |
-
#
|
43 |
fc_res = model_fit.get_forecast(steps=3)
|
44 |
-
forecast = fc_res.predicted_mean #
|
45 |
-
|
46 |
-
#
|
47 |
fig = go.Figure()
|
48 |
-
fig.add_scatter(
|
49 |
-
|
50 |
-
mode="lines", name=value_col
|
51 |
-
)
|
52 |
-
fig.add_scatter(
|
53 |
-
x=forecast.index, y=forecast,
|
54 |
-
mode="lines+markers", name="Forecast"
|
55 |
-
)
|
56 |
fig.update_layout(
|
57 |
title=f"{value_col} Forecast",
|
58 |
-
xaxis_title=
|
59 |
-
yaxis_title=
|
60 |
-
template="plotly_dark"
|
61 |
)
|
62 |
-
fig.write_image("forecast_plot.png")
|
63 |
-
|
64 |
-
#
|
65 |
-
|
66 |
-
return tbl.to_string()
|
|
|
6 |
|
7 |
def forecast_metric_tool(file_path: str, date_col: str, value_col: str):
|
8 |
"""
|
9 |
+
Forecast next 3 periods for any numeric metric, saving
|
10 |
+
the PNG under /tmp and returning the forecast table as text.
|
11 |
"""
|
12 |
+
# 1) Load & parse dates
|
13 |
df = pd.read_csv(file_path)
|
14 |
try:
|
15 |
df[date_col] = pd.to_datetime(df[date_col])
|
16 |
except Exception:
|
17 |
return f"β Could not parse '{date_col}' as dates."
|
18 |
+
|
19 |
+
# 2) Coerce metric to numeric & drop invalid rows
|
20 |
df[value_col] = pd.to_numeric(df[value_col], errors="coerce")
|
21 |
df = df.dropna(subset=[date_col, value_col])
|
|
|
22 |
if df.empty:
|
23 |
return f"β No valid data for '{value_col}'."
|
24 |
+
|
25 |
+
# 3) Sort by date, set index, then collapse any duplicate timestamps
|
26 |
+
df = df.sort_values(date_col).set_index(date_col)
|
27 |
+
# If you have multiple rows for the same timestamp, take their mean
|
28 |
+
df = df[[value_col]].groupby(level=0).mean()
|
29 |
+
|
30 |
+
# 4) Infer frequency (e.g. 'D', 'M', etc.) and reindex
|
31 |
freq = pd.infer_freq(df.index)
|
32 |
if freq is None:
|
33 |
+
freq = "D" # fallback to daily
|
|
|
34 |
df = df.asfreq(freq)
|
35 |
+
|
36 |
+
# 5) Fit ARIMA
|
37 |
try:
|
38 |
model = ARIMA(df[value_col], order=(1, 1, 1))
|
39 |
model_fit = model.fit()
|
40 |
except Exception as e:
|
41 |
return f"β ARIMA fitting failed: {e}"
|
42 |
+
|
43 |
+
# 6) Forecast with a proper DatetimeIndex
|
44 |
fc_res = model_fit.get_forecast(steps=3)
|
45 |
+
forecast = fc_res.predicted_mean # pd.Series indexed by future dates
|
46 |
+
|
47 |
+
# 7) Plot history + forecast
|
48 |
fig = go.Figure()
|
49 |
+
fig.add_scatter(x=df.index, y=df[value_col], mode="lines", name=value_col)
|
50 |
+
fig.add_scatter(x=forecast.index, y=forecast, mode="lines+markers", name="Forecast")
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
fig.update_layout(
|
52 |
title=f"{value_col} Forecast",
|
53 |
+
xaxis_title=date_col,
|
54 |
+
yaxis_title=value_col,
|
55 |
+
template="plotly_dark",
|
56 |
)
|
57 |
+
fig.write_image("forecast_plot.png") # safely lands in /tmp via monkey-patch
|
58 |
+
|
59 |
+
# 8) Return the forecast table as plain text
|
60 |
+
return forecast.to_frame(name="Forecast").to_string()
|
|