import pandas as pd import matplotlib.pyplot as plt from statsmodels.tsa.arima.model import ARIMA from google.adk.tools import Tool @Tool(name="forecast_tool", description="Forecast future sales using ARIMA") def forecast(file_path: str) -> str: df = pd.read_csv(file_path) df['Month'] = pd.to_datetime(df['Month']) df.set_index('Month', inplace=True) model = ARIMA(df['Sales'], order=(1, 1, 1)) model_fit = model.fit() forecast = model_fit.forecast(steps=3) df_forecast = pd.DataFrame(forecast, columns=['Forecast']) df_forecast.plot(title="Sales Forecast", figsize=(10, 6)) plt.savefig("forecast_plot.png") return "Generated forecast_plot.png"