import streamlit as st from agents.analytics_pipeline import analytics_coordinator import os from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES st.set_page_config(page_title="BizIntel AI Ultra", layout="wide") st.title("📊 BizIntel AI Ultra - Ultimate Business Intelligence") input_source = st.radio("Select data source", ["Upload CSV", "Connect to SQL Database"]) file_path = None if input_source == "Upload CSV": uploaded_file = st.file_uploader("Upload CSV", type="csv") if uploaded_file: file_path = os.path.join("data", uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.read()) st.success("File uploaded.") elif input_source == "Connect to SQL Database": engine = st.selectbox("Select database engine", SUPPORTED_ENGINES) conn_str = st.text_input("Connection string (SQLAlchemy format)") if conn_str: tables = list_tables(conn_str) if tables: table_name = st.selectbox("Choose a table", tables) if table_name: file_path = fetch_data_from_db(conn_str, table_name) st.success(f"Fetched table '{table_name}' as CSV.") if file_path: st.info("Running analytics pipeline...") result = analytics_coordinator.run(input=file_path) st.subheader("Analysis & Strategy Report") st.text(result) if os.path.exists("sales_plot.png"): st.image("sales_plot.png", caption="Sales Trend", use_column_width=True) if os.path.exists("forecast_plot.png"): st.image("forecast_plot.png", caption="Forecast Chart", use_column_width=True)