# tools/forecaster.py import pandas as pd from statsmodels.tsa.arima.model import ARIMA import plotly.graph_objects as go def forecast_metric_tool(file_path: str, date_col: str, value_col: str): """ Forecast the next 3 periods for any numeric metric. - Saves a date‐indexed Plotly PNG under /tmp via the safe write monkey‐patch. - Returns a text table of the forecast. """ # 0) Read full CSV df = pd.read_csv(file_path) # 1) Check that both columns actually exist if date_col not in df.columns: return f"❌ Date column '{date_col}' not found in your data." if value_col not in df.columns: return f"❌ Metric column '{value_col}' not found in your data." # 2) Parse dates try: df[date_col] = pd.to_datetime(df[date_col]) except Exception: return f"❌ Could not parse '{date_col}' as dates." # 3) Coerce metric to numeric & drop invalid rows df[value_col] = pd.to_numeric(df[value_col], errors="coerce") df = df.dropna(subset=[date_col, value_col]) if df.empty: return f"❌ After coercion, no valid data remains for '{value_col}'." # 4) Sort & index by date, collapse duplicates df = df.sort_values(date_col).set_index(date_col) df = df[[value_col]].groupby(level=0).mean() # 5) Infer a frequency and re‐index freq = pd.infer_freq(df.index) if freq is None: freq = "D" # fallback to daily df = df.asfreq(freq) # 6) Fit ARIMA (1,1,1) try: model = ARIMA(df[value_col], order=(1, 1, 1)) model_fit = model.fit() except Exception as e: return f"❌ ARIMA fitting failed: {e}" # 7) Produce a proper date‐indexed forecast fc_res = model_fit.get_forecast(steps=3) forecast = fc_res.predicted_mean # 8) Plot history + forecast fig = go.Figure() fig.add_scatter( x=df.index, y=df[value_col], mode="lines", name=value_col ) fig.add_scatter( x=forecast.index, y=forecast, mode="lines+markers", name="Forecast" ) fig.update_layout( title=f"{value_col} Forecast", xaxis_title=date_col, yaxis_title=value_col, template="plotly_dark", ) fig.write_image("forecast_plot.png") # lands in /tmp via our monkey‐patch # 9) Return the forecast as a text table return forecast.to_frame(name="Forecast").to_string()