# tools/forecaster.py import pandas as pd from statsmodels.tsa.arima.model import ARIMA import plotly.graph_objects as go def forecast_metric_tool(file_path: str, date_col: str, value_col: str): """ Forecast next 3 periods for any numeric metric, saving the PNG under /tmp and returning the forecast table as text. """ # 1) Load & parse dates df = pd.read_csv(file_path) try: df[date_col] = pd.to_datetime(df[date_col]) except Exception: return f"❌ Could not parse '{date_col}' as dates." # 2) Coerce metric to numeric & drop invalid rows df[value_col] = pd.to_numeric(df[value_col], errors="coerce") df = df.dropna(subset=[date_col, value_col]) if df.empty: return f"❌ No valid data for '{value_col}'." # 3) Sort by date, set index, then collapse any duplicate timestamps df = df.sort_values(date_col).set_index(date_col) # If you have multiple rows for the same timestamp, take their mean df = df[[value_col]].groupby(level=0).mean() # 4) Infer frequency (e.g. 'D', 'M', etc.) and reindex freq = pd.infer_freq(df.index) if freq is None: freq = "D" # fallback to daily df = df.asfreq(freq) # 5) Fit ARIMA try: model = ARIMA(df[value_col], order=(1, 1, 1)) model_fit = model.fit() except Exception as e: return f"❌ ARIMA fitting failed: {e}" # 6) Forecast with a proper DatetimeIndex fc_res = model_fit.get_forecast(steps=3) forecast = fc_res.predicted_mean # pd.Series indexed by future dates # 7) Plot history + forecast fig = go.Figure() fig.add_scatter(x=df.index, y=df[value_col], mode="lines", name=value_col) fig.add_scatter(x=forecast.index, y=forecast, mode="lines+markers", name="Forecast") fig.update_layout( title=f"{value_col} Forecast", xaxis_title=date_col, yaxis_title=value_col, template="plotly_dark", ) fig.write_image("forecast_plot.png") # safely lands in /tmp via monkey-patch # 8) Return the forecast table as plain text return forecast.to_frame(name="Forecast").to_string()