# tools/forecaster.py import pandas as pd from statsmodels.tsa.arima.model import ARIMA import plotly.graph_objects as go def forecast_metric_tool(file_path: str, date_col: str, value_col: str): """ Forecast next 3 periods for any numeric metric, and return a textual table. Saves a date-indexed PNG under /tmp via our safe monkey-patch. """ # 1) Load & parse df = pd.read_csv(file_path) try: df[date_col] = pd.to_datetime(df[date_col]) except Exception: return f"❌ Could not parse '{date_col}' as dates." # 2) Coerce metric to numeric & drop invalid df[value_col] = pd.to_numeric(df[value_col], errors="coerce") df = df.dropna(subset=[date_col, value_col]) if df.empty: return f"❌ No valid data for '{value_col}'." # 3) Sort and set index, infer frequency df = df.sort_values(date_col) df.set_index(date_col, inplace=True) freq = pd.infer_freq(df.index) if freq is None: # fallback to daily if pandas can't infer freq = "D" df = df.asfreq(freq) # 4) Fit ARIMA try: model = ARIMA(df[value_col], order=(1, 1, 1)) model_fit = model.fit() except Exception as e: return f"❌ ARIMA fitting failed: {e}" # 5) Get a proper date-indexed forecast fc_res = model_fit.get_forecast(steps=3) forecast = fc_res.predicted_mean # a pd.Series with a DatetimeIndex # 6) Plot historical + forecast fig = go.Figure() fig.add_scatter( x=df.index, y=df[value_col], mode="lines", name=value_col ) fig.add_scatter( x=forecast.index, y=forecast, mode="lines+markers", name="Forecast" ) fig.update_layout( title=f"{value_col} Forecast", xaxis_title=str(date_col), yaxis_title=str(value_col), template="plotly_dark" ) fig.write_image("forecast_plot.png") # 7) Return the forecast table as text tbl = forecast.to_frame(name="Forecast") return tbl.to_string()