File size: 24,935 Bytes
62f88b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# Copyright 2025 Google LLC. Based on work by Yousif Ahmed.
# Concept: ChronoWeave - Branching Narrative Generation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

import streamlit as st
import google.generativeai as genai
import os
import json
import numpy as np
from io import BytesIO
import time
import wave
import contextlib
import asyncio
import uuid # For unique filenames
import shutil # For cleaning up temp dirs

# Image handling
from PIL import Image

# Video and audio processing
from moviepy.editor import ImageClip, AudioFileClip, CompositeVideoClip, concatenate_videoclips

# Type hints
import typing_extensions as typing

# Async support for Streamlit/Google API
import nest_asyncio
nest_asyncio.apply() # Apply patch for asyncio in environments like Streamlit/Jupyter

# --- Configuration ---
st.set_page_config(page_title="ChronoWeave", layout="wide")
st.title("πŸŒ€ ChronoWeave: Branching Narrative Generator")
st.markdown("""
Generate multiple, branching story timelines from a single theme using AI.
Based on the work of Yousif Ahmed. Copyright 2025 Google LLC.
""")

# --- Constants ---
MODEL = "models/gemini-1.5-flash" # Or other suitable text model supporting JSON
# Using v1alpha for the Live API for audio output.
AUDIO_MODEL_VERSION = 'v1alpha' # Must be alpha for audio modality
IMAGE_MODEL_ID = "imagen-3" # Or your preferred Imagen model "imagen-3.0-generate-002"

# --- API Key Handling ---
try:
    # Preferred way to handle secrets in Streamlit sharing/HF Spaces
    GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
    os.environ['GOOGLE_API_KEY'] = GOOGLE_API_KEY
except KeyError:
    st.error("🚨 Google API Key not found! Please add it as a Secret named 'GOOGLE_API_KEY' in your Hugging Face Space settings.", icon="🚨")
    st.stop() # Halt execution if no key

# --- Initialize Google Client ---
try:
    # Initialize the client with the API key
    genai.configure(api_key=GOOGLE_API_KEY)

    # Create separate clients or configure one for different API versions if needed
    # Client for Text/Imagen (standard API)
    client_standard = genai.GenerativeModel(MODEL)
    # Client for Live Audio (v1alpha) - requires different client init
    client_live = genai.Client(
         client_options={'api_endpoint': f'{AUDIO_MODEL_VERSION}.generativelanguage.googleapis.com'}
    )
    # Note: As of recent updates, genai.configure might handle this better,
    # but separating clients or explicitly setting endpoints can be more robust.
    # Adjust based on the library version and observed behavior.


except Exception as e:
    st.error(f"🚨 Failed to initialize Google AI Client: {e}", icon="🚨")
    st.stop()


# --- Define Structured Output Schemas ---
class StorySegment(typing.TypedDict):
    scene_id: int
    image_prompt: str
    audio_text: str
    character_description: str
    timeline_visual_modifier: typing.Optional[str]

class Timeline(typing.TypedDict):
    timeline_id: int
    divergence_reason: str
    segments: list[StorySegment]

class ChronoWeaveResponse(typing.TypedDict):
    core_theme: str
    timelines: list[Timeline]
    total_scenes_per_timeline: int

# --- Helper Functions ---

@contextlib.contextmanager
def wave_file(filename, channels=1, rate=24000, sample_width=2):
    """Context manager to write WAV files."""
    with wave.open(filename, "wb") as wf:
        wf.setnchannels(channels)
        wf.setsampwidth(sample_width)
        wf.setframerate(rate)
        yield wf

async def generate_audio_live_async(api_text, output_filename):
    """Generates audio using Gemini Live API (async version)."""
    collected_audio = bytearray()
    st.write(f"πŸŽ™οΈ Generating audio for: '{api_text[:50]}...'") # Log start

    try:
        # Use the 'client_live' specifically configured for v1alpha
        live_model = client_live.get_model(f"models/gemini-1.5-flash") # Specify model within the live client context

        config = {
            "response_modalities": ["AUDIO"]
        }
        # Connect to the Live API using the live client.
        async with live_model.connect(config=config) as session:
            await session.send_request([api_text]) # Simpler send for single prompt
            async for response in session.stream_content():
                 if response.audio_chunk:
                    collected_audio.extend(response.audio_chunk.data)

        if not collected_audio:
             st.warning(f"⚠️ No audio data received for: '{api_text[:50]}...'")
             return None # Indicate failure

        audio_bytes = bytes(collected_audio)
        # Write the collected audio bytes into a WAV file.
        with wave_file(output_filename) as wf:
            wf.writeframes(audio_bytes)
        st.write(f"   βœ… Audio saved: {os.path.basename(output_filename)}")
        return output_filename
    except Exception as e:
        st.error(f"   ❌ Audio generation failed for '{api_text[:50]}...': {e}", icon="🚨")
        return None


def generate_story_sequence_chrono(theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = "") -> ChronoWeaveResponse | None:
    """Generates branching story sequences using Gemini structured output."""
    st.write(f"πŸ“š Generating {num_timelines} timeline(s) for theme: '{theme}'...")
    divergence_instruction = f"Introduce divergence between timelines. {divergence_prompt}" if divergence_prompt else "Introduce natural points of divergence between timelines after the first scene or two."

    prompt = f'''
    As an expert narrative designer, create a branching story based on the theme: "{theme}".
    Generate exactly {num_timelines} distinct timelines, each containing exactly {num_scenes} scenes.
    Each scene should be approximately 5-10 seconds long when narrated.

    {divergence_instruction} Clearly state the reason for divergence for each timeline after the first.

    For each scene in each timeline, provide:
    - scene_id: An integer starting from 0 for the scene number within its timeline.
    - image_prompt: A concise (15-25 words) description for an image generation model. Focus on visual details, characters (animals/objects only, NO PEOPLE), background, and action. Maintain a consistent 'kids animation style' (e.g., simple, rounded shapes, bright colors) across all scenes and timelines unless specified by a timeline_visual_modifier.
    - audio_text: A single, engaging sentence of narration or dialogue for the scene (max 25 words).
    - character_description: Brief description of recurring characters (names, key features) mentioned in *this specific scene's image prompt*. Keep consistent within a timeline. (Max 30 words).
    - timeline_visual_modifier: (Optional, string or null) A *brief* hint if this timeline should have a slightly different visual feel from this scene onwards (e.g., "slightly darker lighting", "more cluttered background", "character looks worried"). Keep it subtle. Use null if no specific modifier.

    Constraint: Ensure the output strictly adheres to the following JSON schema. Do not include preamble or explanations outside the JSON structure. Respond ONLY with the JSON object.

    JSON Schema:
    {{
      "type": "object",
      "properties": {{
        "core_theme": {{"type": "string"}},
        "timelines": {{
          "type": "array",
          "items": {{
            "type": "object",
            "properties": {{
              "timeline_id": {{"type": "integer"}},
              "divergence_reason": {{"type": "string"}},
              "segments": {{
                "type": "array",
                "items": {{
                  "type": "object",
                  "properties": {{
                    "scene_id": {{"type": "integer"}},
                    "image_prompt": {{"type": "string"}},
                    "audio_text": {{"type": "string"}},
                    "character_description": {{"type": "string"}},
                    "timeline_visual_modifier": {{"type": ["string", "null"]}}
                  }},
                  "required": ["scene_id", "image_prompt", "audio_text", "character_description", "timeline_visual_modifier"]
                }}
              }}
            }},
            "required": ["timeline_id", "divergence_reason", "segments"]
          }}
        }},
        "total_scenes_per_timeline": {{"type": "integer"}}
      }},
      "required": ["core_theme", "timelines", "total_scenes_per_timeline"]
    }}
    '''

    try:
        response = client_standard.generate_content(
            contents=prompt,
            generation_config=genai.types.GenerationConfig(
                 response_mime_type="application/json",
                 # Optional: Add temperature, etc. if needed
            )
            # The schema can also be passed via generation_config in some versions/models
            # config={
            #     'response_mime_type': 'application/json',
            #     'response_schema': ChronoWeaveResponse # Pass the TypedDict directly
            # }
        )

        # Debugging: Print raw response text
        # st.text_area("Raw Gemini Response:", response.text, height=200)

        story_data = json.loads(response.text) # Assuming response.text contains the JSON string
        st.success("βœ… Story structure generated successfully!")
        # Basic validation (can be more thorough)
        if 'timelines' in story_data and isinstance(story_data['timelines'], list):
             # Further validation could check segment structure, etc.
             return story_data # Return the parsed dictionary
        else:
             st.error("🚨 Generated story data is missing the 'timelines' list.", icon="🚨")
             return None

    except json.JSONDecodeError as e:
        st.error(f"🚨 Failed to decode JSON response from Gemini: {e}", icon="🚨")
        st.text_area("Problematic Response Text:", response.text if 'response' in locals() else "No response object.", height=150)
        return None
    except Exception as e:
        st.error(f"🚨 Error generating story sequence: {e}", icon="🚨")
        # Log the prompt potentially? Be careful with sensitive data if applicable.
        # st.text_area("Failed Prompt:", prompt, height=200)
        return None


def generate_image_imagen(prompt: str, aspect_ratio: str = "1:1") -> Image.Image | None:
    """Generates an image using Imagen."""
    st.write(f"πŸ–ΌοΈ Generating image for: '{prompt[:60]}...'")
    try:
        # Use the standard client's dedicated image generation method
        response = client_standard.generate_content(
            f"Generate an image with the following prompt, ensuring a child-friendly animation style and NO human figures: {prompt}",
             generation_config=genai.types.GenerationConfig(
                 candidate_count=1, # Generate one image
                 # Imagen specific parameters are often passed differently or rely on model defaults
                 # Check documentation for precise Imagen control via the unified API
             ),
             # If the model/API version requires specific image parameters:
             # tools=[genai.ImageParams(model=IMAGE_MODEL_ID, number_of_images=1, aspect_ratio=aspect_ratio, person_generation="DONT_ALLOW")]
        )

        # Accessing image data might vary slightly depending on API response structure
        # This assumes response.parts contains the image data if successful
        if response.parts and response.parts[0].inline_data:
            image_bytes = response.parts[0].inline_data.data
            image = Image.open(BytesIO(image_bytes))
            st.write("   βœ… Image generated.")
            return image
        else:
            # Check for safety blocks or other reasons for failure
            if response.prompt_feedback.block_reason:
                 st.warning(f"   ⚠️ Image generation blocked for prompt '{prompt[:60]}...'. Reason: {response.prompt_feedback.block_reason}", icon="⚠️")
            else:
                 st.warning(f"   ⚠️ No image data received for prompt '{prompt[:60]}...'.", icon="⚠️")
            # Debugging: st.write(response)
            return None

    except Exception as e:
        st.error(f"   ❌ Image generation failed for '{prompt[:60]}...': {e}", icon="🚨")
        return None


# --- Streamlit UI Elements ---
st.sidebar.header("Configuration")

# API Key display/check (already handled above, but sidebar is a good place)
if GOOGLE_API_KEY:
    st.sidebar.success("Google API Key Loaded!", icon="βœ…")
else:
    st.sidebar.error("Google API Key Missing!", icon="🚨")

theme = st.sidebar.text_input("Story Theme:", "A curious squirrel finds a shiny object")
num_scenes = st.sidebar.slider("Scenes per Timeline:", min_value=2, max_value=7, value=3)
num_timelines = st.sidebar.slider("Number of Timelines:", min_value=1, max_value=4, value=2)
divergence_prompt = st.sidebar.text_input("Divergence Hint (Optional):", placeholder="e.g., What if it started raining?")
aspect_ratio = st.sidebar.selectbox("Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)

generate_button = st.sidebar.button("✨ Generate ChronoWeave ✨", type="primary", disabled=(not GOOGLE_API_KEY))

st.sidebar.markdown("---")
st.sidebar.info("Note: Generation can take several minutes depending on settings.")

# --- Main Logic ---
if generate_button:
    if not theme:
        st.error("Please enter a story theme.", icon="πŸ‘ˆ")
    else:
        # Create a unique temporary directory for this run
        run_id = str(uuid.uuid4())
        temp_dir = os.path.join(".", f"chrono_temp_{run_id}") # Create in current dir
        os.makedirs(temp_dir, exist_ok=True)
        st.write(f"Working directory: {temp_dir}")

        final_video_paths = {} # To store {timeline_id: video_path}

        with st.spinner("Generating narrative structure..."):
            chrono_data = generate_story_sequence_chrono(theme, num_scenes, num_timelines, divergence_prompt)

        if chrono_data and 'timelines' in chrono_data:
            st.success(f"Found {len(chrono_data['timelines'])} timelines. Processing each...")

            all_timelines_successful = True # Flag to track if all timelines worked

            # Use st.status for detailed progress
            with st.status("Generating assets and composing videos...", expanded=True) as status:

                for timeline in chrono_data['timelines']:
                    timeline_id = timeline['timeline_id']
                    divergence = timeline['divergence_reason']
                    segments = timeline['segments']
                    st.subheader(f"Timeline {timeline_id}: {divergence}")

                    temp_image_files = []
                    temp_audio_files = []
                    video_clips = []
                    timeline_successful = True # Flag for this specific timeline

                    for i, segment in enumerate(segments):
                        status.update(label=f"Processing Timeline {timeline_id}, Scene {i+1}/{num_scenes}...")
                        scene_id = segment['scene_id']
                        image_prompt = segment['image_prompt']
                        audio_text = segment['audio_text']
                        char_desc = segment['character_description']
                        vis_mod = segment['timeline_visual_modifier']

                        st.write(f"--- Scene {i+1} (T{timeline_id}) ---")
                        st.write(f"*   **Image Prompt:** {image_prompt}" + (f" (Modifier: {vis_mod})" if vis_mod else ""))
                        st.write(f"*   **Audio Text:** {audio_text}")
                        # st.write(f"*   Character Desc: {char_desc}") # Can be verbose

                        # --- Image Generation ---
                        combined_prompt = f"{image_prompt} {char_desc}"
                        if vis_mod:
                            combined_prompt += f" Style hint: {vis_mod}"

                        generated_image = generate_image_imagen(combined_prompt, aspect_ratio)

                        if generated_image:
                            image_path = os.path.join(temp_dir, f"t{timeline_id}_s{i}_image.png")
                            generated_image.save(image_path)
                            temp_image_files.append(image_path)
                            st.image(generated_image, width=200) # Show thumbnail
                        else:
                            st.warning(f"Skipping scene {i+1} in timeline {timeline_id} due to image generation failure.")
                            timeline_successful = False
                            continue # Skip to next segment if image fails

                        # --- Audio Generation ---
                        # Add negative prompt to prevent conversational filler
                        audio_negative_prompt = "Narrate the following sentence directly, with expression, without any introduction or closing remarks like 'Okay' or 'Here is the narration'. Just read the sentence:"
                        full_audio_prompt = f"{audio_negative_prompt}\n{audio_text}"
                        audio_path = os.path.join(temp_dir, f"t{timeline_id}_s{i}_audio.wav")

                        # Run the async audio generation function
                        try:
                           generated_audio_path = asyncio.run(generate_audio_live_async(full_audio_prompt, audio_path))
                        except Exception as e:
                            st.error(f"Asyncio error during audio gen: {e}")
                            generated_audio_path = None


                        if generated_audio_path:
                            temp_audio_files.append(generated_audio_path)
                            # st.audio(generated_audio_path) # Optional: Preview audio
                        else:
                            st.warning(f"Skipping video clip for scene {i+1} in timeline {timeline_id} due to audio generation failure.")
                            # Clean up the image file for this failed scene segment
                            if os.path.exists(image_path):
                                os.remove(image_path)
                                temp_image_files.remove(image_path)
                            timeline_successful = False
                            continue # Skip making video clip if audio fails


                        # --- Create Video Clip ---
                        try:
                            st.write("   🎬 Creating video clip...")
                            audio_clip = AudioFileClip(generated_audio_path)
                            # Ensure PIL Image is used if needed, or numpy array directly
                            np_image = np.array(Image.open(image_path))
                            # Create ImageClip, ensure duration matches audio
                            image_clip = ImageClip(np_image).set_duration(audio_clip.duration)

                            # Handle potential size mismatch if needed (resize image_clip or set size explicitly)
                            # image_clip = image_clip.resize(width=...)

                            composite_clip = image_clip.set_audio(audio_clip) # Simpler composition
                            video_clips.append(composite_clip)
                            st.write("      βœ… Clip created.")
                        except Exception as e:
                             st.error(f"      ❌ Failed to create video clip for scene {i+1} (T{timeline_id}): {e}", icon="🚨")
                             timeline_successful = False
                             # Don't break the whole timeline, just skip this clip maybe? Or mark timeline as failed.


                    # --- Assemble Timeline Video ---
                    if video_clips and timeline_successful: # Only assemble if clips were made and no major errors
                        status.update(label=f"Composing final video for Timeline {timeline_id}...")
                        st.write(f"🎞️ Assembling final video for Timeline {timeline_id}...")
                        try:
                            final_timeline_video = concatenate_videoclips(video_clips, method="compose")
                            output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final_video.mp4")
                            # Use 'libx264' for broader compatibility, specify audio codec
                            final_timeline_video.write_videofile(output_filename, fps=24, codec='libx264', audio_codec='aac')
                            final_video_paths[timeline_id] = output_filename
                            st.success(f"   βœ… Video for Timeline {timeline_id} saved: {os.path.basename(output_filename)}")

                            # Close clips to release resources
                            for clip in video_clips:
                                if hasattr(clip, 'close'): clip.close()
                                if hasattr(clip, 'audio') and hasattr(clip.audio, 'close'): clip.audio.close()
                            if hasattr(final_timeline_video, 'close'): final_timeline_video.close()


                        except Exception as e:
                            st.error(f"   ❌ Failed to write final video for Timeline {timeline_id}: {e}", icon="🚨")
                            all_timelines_successful = False
                    elif not video_clips:
                         st.warning(f"No video clips were successfully generated for Timeline {timeline_id}. Skipping final video assembly.")
                         all_timelines_successful = False
                    else:
                         st.warning(f"Timeline {timeline_id} encountered errors. Skipping final video assembly.")
                         all_timelines_successful = False


                    # Intermediate cleanup for the timeline (optional, helps manage files)
                    # for file in temp_audio_files:
                    #     if os.path.exists(file): os.remove(file)
                    # for file in temp_image_files:
                    #     if os.path.exists(file): os.remove(file)

                # Final status update
                if all_timelines_successful and final_video_paths:
                    status.update(label="ChronoWeave Generation Complete!", state="complete", expanded=False)
                elif final_video_paths:
                     status.update(label="ChronoWeave Generation Partially Complete (some errors occurred).", state="warning", expanded=False)
                else:
                    status.update(label="ChronoWeave Generation Failed.", state="error", expanded=False)


            # --- Display Results ---
            st.header("Generated Timelines")
            if final_video_paths:
                sorted_timeline_ids = sorted(final_video_paths.keys())
                for timeline_id in sorted_timeline_ids:
                    video_path = final_video_paths[timeline_id]
                    # Find matching timeline divergence reason
                    reason = "Unknown"
                    for t in chrono_data.get('timelines', []):
                         if t.get('timeline_id') == timeline_id:
                             reason = t.get('divergence_reason', 'N/A')
                             break
                    st.subheader(f"Timeline {timeline_id}: {reason}")
                    try:
                        video_file = open(video_path, 'rb')
                        video_bytes = video_file.read()
                        st.video(video_bytes)
                        video_file.close()
                    except FileNotFoundError:
                         st.error(f"Could not find video file: {video_path}", icon="🚨")
                    except Exception as e:
                         st.error(f"Could not display video {video_path}: {e}", icon="🚨")
            else:
                st.warning("No final videos were successfully generated.")

            # --- Cleanup ---
            st.write("Cleaning up temporary files...")
            try:
                shutil.rmtree(temp_dir)
                st.write("   βœ… Temporary files removed.")
            except Exception as e:
                st.warning(f"   ⚠️ Could not remove temporary directory {temp_dir}: {e}", icon="⚠️")


        elif not chrono_data:
            st.error("Story generation failed. Cannot proceed.", icon="πŸ›‘")
        else:
            # This case might happen if chrono_data is returned but is malformed (e.g., no 'timelines' key)
            st.error("Story data seems malformed. Cannot proceed.", icon="πŸ›‘")
            # st.json(chrono_data) # Display the problematic data

else:
    st.info("Configure settings in the sidebar and click 'Generate ChronoWeave'")