File size: 31,367 Bytes
62f88b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37f6f
 
 
62f88b4
 
 
3c37f6f
90e64d1
 
62f88b4
 
3c37f6f
09b00d7
62f88b4
 
 
 
 
 
 
 
3c37f6f
 
 
 
62f88b4
3c37f6f
 
62f88b4
3c37f6f
 
62f88b4
 
 
3c37f6f
e9679bf
3c37f6f
e9679bf
 
3c37f6f
e9679bf
3c37f6f
 
 
e9679bf
 
3c37f6f
e9679bf
62f88b4
 
3c37f6f
62f88b4
 
3c37f6f
62f88b4
3c37f6f
 
 
 
e9679bf
90e64d1
62f88b4
3c37f6f
e9679bf
62f88b4
 
09b00d7
62f88b4
e9679bf
3c37f6f
e9679bf
3c37f6f
e9679bf
90e64d1
e9679bf
 
 
 
 
09b00d7
 
 
e9679bf
09b00d7
62f88b4
e9679bf
 
 
62f88b4
 
 
90e64d1
3c37f6f
394ae41
e9679bf
394ae41
e9679bf
394ae41
 
90e64d1
 
 
3c37f6f
394ae41
3c37f6f
 
 
394ae41
e9679bf
394ae41
3c37f6f
 
394ae41
 
 
3c37f6f
394ae41
90e64d1
 
 
 
e9679bf
90e64d1
62f88b4
 
 
 
3c37f6f
 
 
 
 
e9679bf
62f88b4
e9679bf
3c37f6f
 
394ae41
 
3c37f6f
 
 
90e64d1
e9679bf
 
62f88b4
394ae41
e9679bf
62f88b4
3c37f6f
62f88b4
394ae41
e9679bf
 
394ae41
3c37f6f
62f88b4
e9679bf
 
 
3c37f6f
e9679bf
90e64d1
e9679bf
3c37f6f
 
e9679bf
 
 
3c37f6f
 
e9679bf
3c37f6f
e9679bf
 
 
 
 
 
 
 
 
 
62f88b4
e9679bf
 
 
 
3c37f6f
90e64d1
3c37f6f
 
 
e9679bf
 
 
62f88b4
 
3c37f6f
e9679bf
394ae41
e9679bf
62f88b4
e9679bf
 
394ae41
62f88b4
394ae41
6c3bf7e
 
394ae41
6c3bf7e
 
394ae41
 
6c3bf7e
394ae41
 
09b00d7
 
3c37f6f
e9679bf
6c3bf7e
e9679bf
3c37f6f
e9679bf
62f88b4
90e64d1
e9679bf
 
62f88b4
394ae41
e9679bf
 
 
394ae41
e9679bf
 
 
62f88b4
 
3c37f6f
394ae41
 
3c37f6f
90e64d1
 
 
3c37f6f
90e64d1
 
3c37f6f
62f88b4
90e64d1
e9679bf
3c37f6f
62f88b4
 
e9679bf
62f88b4
e9679bf
 
 
 
3c37f6f
 
 
e9679bf
3c37f6f
 
 
e9679bf
62f88b4
3c37f6f
e9679bf
 
 
 
 
3c37f6f
 
e9679bf
 
3c37f6f
e9679bf
3c37f6f
e9679bf
3c37f6f
 
6c3bf7e
3c37f6f
90e64d1
394ae41
 
09b00d7
62f88b4
3c37f6f
e9679bf
 
 
3c37f6f
 
 
e9679bf
3c37f6f
 
e9679bf
 
 
3c37f6f
 
 
394ae41
 
e9679bf
394ae41
3c37f6f
e9679bf
 
 
3c37f6f
 
 
e9679bf
394ae41
90e64d1
3c37f6f
394ae41
 
e9679bf
09b00d7
 
e9679bf
 
3c37f6f
e9679bf
 
 
09b00d7
90e64d1
 
 
e9679bf
3c37f6f
 
 
09b00d7
e9679bf
 
 
62f88b4
 
90e64d1
e9679bf
 
62f88b4
e9679bf
 
3c37f6f
e9679bf
09b00d7
3c37f6f
6c3bf7e
09b00d7
 
e9679bf
3c37f6f
 
09b00d7
3c37f6f
e9679bf
 
 
 
3c37f6f
 
 
e9679bf
 
 
62f88b4
3c37f6f
 
62f88b4
e9679bf
3c37f6f
e9679bf
3c37f6f
394ae41
3c37f6f
394ae41
3c37f6f
394ae41
e9679bf
394ae41
3c37f6f
e9679bf
 
 
62f88b4
90e64d1
3c37f6f
 
e9679bf
09b00d7
 
394ae41
3c37f6f
 
394ae41
e9679bf
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Copyright 2025 Google LLC. Based on work by Yousif Ahmed.
# Concept: ChronoWeave - Branching Narrative Generation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

import streamlit as st
import google.generativeai as genai
import os
import json
import numpy as np
from io import BytesIO
import time
import wave
import contextlib
import asyncio
import uuid # For unique identifiers
import shutil # For directory operations
import logging # For better logging

# Image handling
from PIL import Image
# Pydantic for data validation
from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator
from typing import List, Optional, Literal, Dict, Any

# Video and audio processing
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
# from moviepy.config import change_settings # Potential for setting imagemagick path if needed

# Type hints
import typing_extensions as typing

# Async support for Streamlit/Google API
import nest_asyncio
nest_asyncio.apply() # Apply patch for asyncio in environments like Streamlit/Jupyter

# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# --- Configuration ---
st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded")
st.title("πŸŒ€ ChronoWeave: Advanced Branching Narrative Generator")
st.markdown("""
Generate multiple, branching story timelines from a single theme using AI, complete with images and narration.
*Based on the work of Yousif Ahmed. Copyright 2025 Google LLC.*
""")

# --- Constants ---
# Text/JSON Model
TEXT_MODEL_ID = "models/gemini-1.5-flash" # Or "gemini-1.5-pro"
# Audio Model Config
AUDIO_MODEL_ID = "models/gemini-1.5-flash" # Model used for audio tasks
AUDIO_SAMPLING_RATE = 24000
# Image Model Config
IMAGE_MODEL_ID = "imagen-3" # <<< YOUR IMAGE MODEL
DEFAULT_ASPECT_RATIO = "1:1"
# Video Config
VIDEO_FPS = 24
VIDEO_CODEC = "libx264"
AUDIO_CODEC = "aac"
# File Management
TEMP_DIR_BASE = ".chrono_temp"

# --- API Key Handling ---
GOOGLE_API_KEY = None
try:
    GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
    logger.info("Google API Key loaded from Streamlit secrets.")
except KeyError:
    GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
    if GOOGLE_API_KEY:
        logger.info("Google API Key loaded from environment variable.")
    else:
        st.error("🚨 **Google API Key Not Found!** Please configure it.", icon="🚨")
        st.stop()

# --- Initialize Google Clients ---
# Initialize handles for Text, Audio (using Text model), and Image models
try:
    genai.configure(api_key=GOOGLE_API_KEY)
    logger.info("Configured google-generativeai with API key.")

    # Handle for Text/JSON Generation
    client_standard = genai.GenerativeModel(TEXT_MODEL_ID)
    logger.info(f"Initialized text/JSON model handle: {TEXT_MODEL_ID}.")

    # Handle for Audio Generation (uses a text-capable model via connect)
    live_model = genai.GenerativeModel(AUDIO_MODEL_ID)
    logger.info(f"Initialized audio model handle: {AUDIO_MODEL_ID}.")

    # Handle for Image Generation <<<<------ NEW/CORRECTED
    image_model = genai.GenerativeModel(IMAGE_MODEL_ID)
    logger.info(f"Initialized image model handle: {IMAGE_MODEL_ID}.")

except AttributeError as ae:
     logger.exception("AttributeError during Google AI Client Initialization.")
     st.error(f"🚨 Initialization Error: {ae}. Ensure library is up-to-date.", icon="🚨")
     st.stop()
except Exception as e:
    # Catch potential errors if a model ID is invalid or inaccessible
    logger.exception("Failed to initialize Google AI Clients/Models.")
    st.error(f"🚨 Failed to initialize Google AI Clients/Models: {e}", icon="🚨")
    st.stop()


# --- Define Pydantic Schemas (Using V2 Syntax) ---
class StorySegment(BaseModel):
    scene_id: int = Field(..., ge=0)
    image_prompt: str = Field(..., min_length=10, max_length=250)
    audio_text: str = Field(..., min_length=5, max_length=150)
    character_description: str = Field(..., max_length=250)
    timeline_visual_modifier: Optional[str] = Field(None, max_length=50)

    @field_validator('image_prompt')
    @classmethod
    def image_prompt_no_humans(cls, v: str) -> str:
        if any(word in v.lower() for word in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]):
            logger.warning(f"Image prompt '{v[:50]}...' may contain human descriptions.")
        return v

class Timeline(BaseModel):
    timeline_id: int = Field(..., ge=0)
    divergence_reason: str = Field(..., min_length=5) # Relying on prompt for 1st timeline
    segments: List[StorySegment] = Field(..., min_items=1)

class ChronoWeaveResponse(BaseModel):
    core_theme: str = Field(..., min_length=5)
    timelines: List[Timeline] = Field(..., min_items=1)
    total_scenes_per_timeline: int = Field(..., gt=0)

    @model_validator(mode='after')
    def check_timeline_segment_count(self) -> 'ChronoWeaveResponse':
        expected_scenes = self.total_scenes_per_timeline
        for i, timeline in enumerate(self.timelines):
            if len(timeline.segments) != expected_scenes:
                raise ValueError(f"Timeline {i} ID {timeline.timeline_id}: Expected {expected_scenes} segments, found {len(timeline.segments)}.")
        return self

# --- Helper Functions ---

@contextlib.contextmanager
def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2):
    """Context manager to safely write WAV files."""
    wf = None
    try:
        wf = wave.open(filename, "wb")
        wf.setnchannels(channels); wf.setsampwidth(sample_width); wf.setframerate(rate)
        yield wf
    except Exception as e: logger.error(f"Error opening/configuring wave file {filename}: {e}"); raise
    finally:
        if wf:
            try: wf.close()
            except Exception as e_close: logger.error(f"Error closing wave file {filename}: {e_close}")


async def generate_audio_live_async(api_text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]:
    """Generates audio using Gemini Live API (async version) via the GenerativeModel."""
    collected_audio = bytearray(); task_id = os.path.basename(output_filename).split('.')[0]
    logger.info(f"πŸŽ™οΈ [{task_id}] Requesting audio: '{api_text[:60]}...'")
    try:
        config = {"response_modalities": ["AUDIO"], "audio_config": {"audio_encoding": "LINEAR16", "sample_rate_hertz": AUDIO_SAMPLING_RATE}}
        directive_prompt = f"Narrate directly: \"{api_text}\"" # Shorter directive
        async with live_model.connect(config=config) as session:
            await session.send_request([directive_prompt])
            async for response in session.stream_content():
                if response.audio_chunk and response.audio_chunk.data: collected_audio.extend(response.audio_chunk.data)
                if hasattr(response, 'error') and response.error: logger.error(f"   ❌ [{task_id}] Audio stream error: {response.error}"); st.error(f"Audio stream error {task_id}: {response.error}", icon="πŸ”Š"); return None
        if not collected_audio: logger.warning(f"⚠️ [{task_id}] No audio data received."); st.warning(f"No audio data for {task_id}.", icon="πŸ”Š"); return None
        with wave_file_writer(output_filename, rate=AUDIO_SAMPLING_RATE) as wf: wf.writeframes(bytes(collected_audio))
        logger.info(f"   βœ… [{task_id}] Audio saved: {os.path.basename(output_filename)} ({len(collected_audio)} bytes)")
        return output_filename
    except genai.types.generation_types.BlockedPromptException as bpe: logger.error(f"   ❌ [{task_id}] Audio blocked: {bpe}"); st.error(f"Audio blocked {task_id}.", icon="πŸ”‡"); return None
    except Exception as e: logger.exception(f"   ❌ [{task_id}] Audio failed: {e}"); st.error(f"Audio failed {task_id}: {e}", icon="πŸ”Š"); return None


def generate_story_sequence_chrono(theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = "") -> Optional[ChronoWeaveResponse]:
    """Generates branching story sequences using Gemini structured output and validates with Pydantic."""
    st.info(f"πŸ“š Generating {num_timelines} timeline(s) x {num_scenes} scenes for: '{theme}'...")
    logger.info(f"Requesting story structure: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}")
    divergence_instruction = (
        f"Introduce clear points of divergence between timelines, after the first scene if possible. "
        f"Use hint if provided: '{divergence_prompt}'. "
        f"State divergence reason clearly. **For timeline_id 0, use 'Initial path' or 'Baseline scenario'.**" # Explicit instruction for first timeline
    )
    prompt = f"""
    Act as narrative designer. Create story based on theme: "{theme}".
    **Instructions:**
    1. Generate exactly **{num_timelines}** timelines.
    2. Each timeline exactly **{num_scenes}** scenes.
    3. **NO humans/humanoids**. Focus: animals, fantasy creatures, animated objects, nature.
    4. {divergence_instruction}
    5. Maintain consistent style: **'Simple, friendly kids animation, bright colors, rounded shapes'**, unless `timeline_visual_modifier` alters it.
    6. `audio_text`: single concise sentence (max 30 words).
    7. `image_prompt`: descriptive, concise (target 15-35 words MAX). Focus on scene elements. **AVOID repeating general style description**.
    8. `character_description`: VERY brief description of characters in scene prompt (name, features). Target < 20 words total.
    **Output Format:** ONLY valid JSON object adhering to schema. No text before/after.
    **JSON Schema:** ```json\n{json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)}\n```"""
    try:
        response = client_standard.generate_content(contents=prompt, generation_config=genai.types.GenerationConfig(response_mime_type="application/json", temperature=0.7))
        try: raw_data = json.loads(response.text)
        except json.JSONDecodeError as json_err: logger.error(f"Failed JSON decode: {json_err}\nResponse:\n{response.text}"); st.error(f"🚨 Failed parse story: {json_err}", icon="πŸ“„"); st.text_area("Problem Response:", response.text, height=150); return None
        except Exception as e: logger.error(f"Error processing text: {e}"); st.error(f"🚨 Error processing AI response: {e}", icon="πŸ“„"); return None
        try:
            validated_data = ChronoWeaveResponse.model_validate(raw_data)
            logger.info("βœ… Story structure generated and validated successfully!")
            st.success("βœ… Story structure generated and validated!")
            return validated_data
        except ValidationError as val_err: logger.error(f"JSON validation failed: {val_err}\nData:\n{json.dumps(raw_data, indent=2)}"); st.error(f"🚨 Generated structure invalid: {val_err}", icon="🧬"); st.json(raw_data); return None
    except genai.types.generation_types.BlockedPromptException as bpe: logger.error(f"Story gen blocked: {bpe}"); st.error("🚨 Story prompt blocked.", icon="🚫"); return None
    except Exception as e: logger.exception("Error during story gen:"); st.error(f"🚨 Story gen error: {e}", icon="πŸ’₯"); return None


def generate_image_imagen(prompt: str, aspect_ratio: str = "1:1", task_id: str = "IMG") -> Optional[Image.Image]:
    """Generates an image using the dedicated image model handle."""
    logger.info(f"πŸ–ΌοΈ [{task_id}] Requesting image: '{prompt[:70]}...' (Aspect: {aspect_ratio})")
    full_prompt = (f"Simple kids animation style, bright colors, rounded shapes. NO humans/humanoids. Aspect ratio {aspect_ratio}. Scene: {prompt}")
    try:
        # Use the dedicated image_model handle <<<<<------ CORRECTED CALL
        response = image_model.generate_content(
            full_prompt, generation_config=genai.types.GenerationConfig(candidate_count=1)
        )
        image_bytes, safety_ratings, block_reason, finish_reason = None, [], None, None
        if hasattr(response, 'candidates') and response.candidates:
            candidate = response.candidates[0]
            if hasattr(candidate, 'finish_reason'): finish_reason = getattr(candidate.finish_reason, 'name', str(candidate.finish_reason))
            if hasattr(candidate, 'content') and candidate.content and hasattr(candidate.content, 'parts') and candidate.content.parts:
                part = candidate.content.parts[0]
                if hasattr(part, 'inline_data') and part.inline_data and hasattr(part.inline_data, 'data'): image_bytes = part.inline_data.data
            if hasattr(candidate, 'safety_ratings'): safety_ratings = candidate.safety_ratings
        if hasattr(response, 'prompt_feedback') and response.prompt_feedback:
            if hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason.name != 'BLOCK_REASON_UNSPECIFIED': block_reason = response.prompt_feedback.block_reason.name
            if hasattr(response.prompt_feedback, 'safety_ratings'): safety_ratings.extend(response.prompt_feedback.safety_ratings)

        if image_bytes:
            try:
                image = Image.open(BytesIO(image_bytes)); logger.info(f"   βœ… [{task_id}] Image generated.")
                filtered_ratings = [f"{r.category.name}: {r.probability.name}" for r in safety_ratings if hasattr(r,'probability') and r.probability.name != 'NEGLIGIBLE']
                if filtered_ratings: logger.warning(f"   ⚠️ [{task_id}] Image flagged: {', '.join(filtered_ratings)}."); st.warning(f"Image {task_id} flagged: {', '.join(filtered_ratings)}", icon="⚠️")
                return image
            except Exception as img_err: logger.error(f"   ❌ [{task_id}] Img decode error: {img_err}"); st.warning(f"Decode image data {task_id} failed.", icon="πŸ–ΌοΈ"); return None
        else:
            fail_reason = "Unknown reason."
            if block_reason: fail_reason = f"Blocked ({block_reason})."
            elif finish_reason and finish_reason not in ['STOP', 'FINISH_REASON_UNSPECIFIED']: fail_reason = f"Finished early ({finish_reason})."
            else:
                filtered_ratings = [f"{r.category.name}: {r.probability.name}" for r in safety_ratings if hasattr(r,'probability') and r.probability.name != 'NEGLIGIBLE']
                if filtered_ratings: fail_reason = f"Safety filters: {', '.join(filtered_ratings)}."
            # Log full response only if reason remains unknown
            if fail_reason == "Unknown reason.": logger.warning(f"   ⚠️ [{task_id}] Full API response object: {response}") # Keep this debug log for now
            logger.warning(f"   ⚠️ [{task_id}] No image data. Reason: {fail_reason} Prompt: '{prompt[:70]}...'")
            st.warning(f"No image data {task_id}. Reason: {fail_reason}", icon="πŸ–ΌοΈ"); return None
    except genai.types.generation_types.BlockedPromptException as bpe: logger.error(f"   ❌ [{task_id}] Image blocked (exception): {bpe}"); st.error(f"Image blocked {task_id} (exception).", icon="🚫"); return None
    except Exception as e: logger.exception(f"   ❌ [{task_id}] Image gen failed: {e}"); st.error(f"Image gen failed {task_id}: {e}", icon="πŸ–ΌοΈ"); return None

# --- Streamlit UI Elements ---
st.sidebar.header("βš™οΈ Configuration")
if GOOGLE_API_KEY: st.sidebar.success("Google API Key Loaded", icon="βœ…")
else: st.sidebar.error("Google API Key Missing!", icon="🚨")
theme = st.sidebar.text_input("πŸ“– Story Theme:", "A curious squirrel finds a mysterious, glowing acorn")
num_scenes = st.sidebar.slider("🎬 Scenes per Timeline:", min_value=2, max_value=7, value=3)
num_timelines = st.sidebar.slider("🌿 Number of Timelines:", min_value=1, max_value=4, value=2)
divergence_prompt = st.sidebar.text_input("↔️ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?")
st.sidebar.subheader("🎨 Visual & Audio Settings")
aspect_ratio = st.sidebar.selectbox("πŸ–ΌοΈ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)
audio_voice = None
generate_button = st.sidebar.button("✨ Generate ChronoWeave ✨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True)
st.sidebar.markdown("---")
st.sidebar.info("⏳ Generation can take several minutes.", icon="⏳")
st.sidebar.markdown(f"<small>Txt:{TEXT_MODEL_ID}, Img:{IMAGE_MODEL_ID}, Aud:{AUDIO_MODEL_ID}</small>", unsafe_allow_html=True)

# --- Main Logic ---
if generate_button:
    if not theme: st.error("Please enter a story theme.", icon="πŸ‘ˆ")
    else:
        run_id = str(uuid.uuid4()).split('-')[0]; temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}")
        try: os.makedirs(temp_dir, exist_ok=True); logger.info(f"Created temp dir: {temp_dir}")
        except OSError as e: st.error(f"🚨 Failed create temp dir {temp_dir}: {e}", icon="πŸ“‚"); st.stop()
        final_video_paths = {}; generation_errors = {}

        # --- 1. Generate Narrative Structure ---
        chrono_response: Optional[ChronoWeaveResponse] = None
        with st.spinner("Generating narrative structure... πŸ€”"): chrono_response = generate_story_sequence_chrono(theme, num_scenes, num_timelines, divergence_prompt)

        if chrono_response:
            # --- 2. Process Each Timeline ---
            overall_start_time = time.time(); all_timelines_successful = True
            with st.status("Generating assets and composing videos...", expanded=True) as status:
                for timeline_index, timeline in enumerate(chrono_response.timelines):
                    timeline_id, divergence, segments = timeline.timeline_id, timeline.divergence_reason, timeline.segments
                    timeline_label = f"Timeline {timeline_id}"; st.subheader(f"Processing {timeline_label}: {divergence}")
                    logger.info(f"--- Processing {timeline_label} (Idx: {timeline_index}) ---"); generation_errors[timeline_id] = []
                    temp_image_files, temp_audio_files, video_clips = {}, {}, []
                    timeline_start_time = time.time(); scene_success_count = 0

                    for scene_index, segment in enumerate(segments):
                        scene_id = segment.scene_id; task_id = f"T{timeline_id}_S{scene_id}"
                        status.update(label=f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
                        st.markdown(f"--- **Scene {scene_id + 1} ({task_id})** ---")
                        logger.info(f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
                        scene_has_error = False
                        st.write(f"   *Img Prompt:* {segment.image_prompt}" + (f" *(Mod: {segment.timeline_visual_modifier})*" if segment.timeline_visual_modifier else "")); st.write(f"   *Audio Text:* {segment.audio_text}")

                        # --- 2a. Image Generation ---
                        generated_image: Optional[Image.Image] = None
                        with st.spinner(f"[{task_id}] Generating image... 🎨"):
                            combined_prompt = segment.image_prompt
                            if segment.character_description: combined_prompt += f" Featuring: {segment.character_description}"
                            if segment.timeline_visual_modifier: combined_prompt += f" Style hint: {segment.timeline_visual_modifier}."
                            generated_image = generate_image_imagen(combined_prompt, aspect_ratio, task_id)
                        if generated_image:
                            image_path = os.path.join(temp_dir, f"{task_id}_image.png")
                            try: generated_image.save(image_path); temp_image_files[scene_id] = image_path; st.image(generated_image, width=180, caption=f"Scene {scene_id+1}")
                            except Exception as e: logger.error(f"   ❌ [{task_id}] Img save error: {e}"); st.error(f"Save image {task_id} failed.", icon="πŸ’Ύ"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Img save fail.")
                        else: scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Img gen fail."); continue

                        # --- 2b. Audio Generation ---
                        generated_audio_path: Optional[str] = None
                        if not scene_has_error:
                            with st.spinner(f"[{task_id}] Generating audio... πŸ”Š"):
                                audio_path_temp = os.path.join(temp_dir, f"{task_id}_audio.wav")
                                try: generated_audio_path = asyncio.run(generate_audio_live_async(segment.audio_text, audio_path_temp, audio_voice))
                                except RuntimeError as e: logger.error(f"   ❌ [{task_id}] Asyncio error: {e}"); st.error(f"Asyncio audio error {task_id}: {e}", icon="⚑"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio async err.")
                                except Exception as e: logger.exception(f"   ❌ [{task_id}] Audio error: {e}"); st.error(f"Audio error {task_id}: {e}", icon="πŸ’₯"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio gen err.")
                            if generated_audio_path:
                                temp_audio_files[scene_id] = generated_audio_path
                                try:
                                    with open(generated_audio_path, 'rb') as ap: st.audio(ap.read(), format='audio/wav')
                                except Exception as e: logger.warning(f"   ⚠️ [{task_id}] Audio preview error: {e}")
                            else:
                                scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio gen fail.")
                                if scene_id in temp_image_files and os.path.exists(temp_image_files[scene_id]):
                                    try: os.remove(temp_image_files[scene_id]); logger.info(f"   πŸ—‘οΈ [{task_id}] Removed img due to audio fail."); del temp_image_files[scene_id]
                                    except OSError as e: logger.warning(f"   ⚠️ [{task_id}] Failed remove img after audio fail: {e}")
                                continue

                        # --- 2c. Create Video Clip ---
                        if not scene_has_error and scene_id in temp_image_files and scene_id in temp_audio_files:
                            st.write(f"   🎬 Creating clip S{scene_id+1}...")
                            img_path, aud_path = temp_image_files[scene_id], temp_audio_files[scene_id]
                            audio_clip_instance, image_clip_instance, composite_clip = None, None, None
                            try:
                                if not os.path.exists(img_path): raise FileNotFoundError(f"Img missing: {img_path}")
                                if not os.path.exists(aud_path): raise FileNotFoundError(f"Aud missing: {aud_path}")
                                audio_clip_instance = AudioFileClip(aud_path); np_image = np.array(Image.open(img_path))
                                image_clip_instance = ImageClip(np_image).set_duration(audio_clip_instance.duration)
                                composite_clip = image_clip_instance.set_audio(audio_clip_instance)
                                video_clips.append(composite_clip); logger.info(f"      βœ… [{task_id}] Clip created (Dur: {audio_clip_instance.duration:.2f}s).")
                                st.write(f"      βœ… Clip created (Dur: {audio_clip_instance.duration:.2f}s)."); scene_success_count += 1
                            except Exception as e:
                                logger.exception(f"      ❌ [{task_id}] Failed clip creation: {e}"); st.error(f"Failed clip {task_id}: {e}", icon="🎬")
                                scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Clip fail.")
                                if audio_clip_instance: audio_clip_instance.close();
                                if image_clip_instance: image_clip_instance.close()
                                try:
                                     if os.path.exists(img_path): os.remove(img_path)
                                     if os.path.exists(aud_path): os.remove(aud_path)
                                except OSError as e_rem: logger.warning(f"   ⚠️ [{task_id}] Failed remove files after clip err: {e_rem}")

                    # --- 2d. Assemble Timeline Video ---
                    timeline_duration = time.time() - timeline_start_time
                    if video_clips and scene_success_count == len(segments):
                        status.update(label=f"Composing video {timeline_label}...")
                        st.write(f"🎞️ Assembling video {timeline_label}..."); logger.info(f"🎞️ Assembling video {timeline_label}...")
                        output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4"); final_timeline_video = None
                        try:
                            final_timeline_video = concatenate_videoclips(video_clips, method="compose")
                            final_timeline_video.write_videofile(output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None)
                            final_video_paths[timeline_id] = output_filename; logger.info(f"   βœ… [{timeline_label}] Video saved: {os.path.basename(output_filename)}")
                            st.success(f"βœ… Video {timeline_label} completed in {timeline_duration:.2f}s.")
                        except Exception as e:
                            logger.exception(f"   ❌ [{timeline_label}] Video assembly failed: {e}"); st.error(f"Assemble video {timeline_label} failed: {e}", icon="πŸ“Ό")
                            all_timelines_successful = False; generation_errors[timeline_id].append(f"T{timeline_id}: Assembly failed.")
                        finally:
                            logger.debug(f"[{timeline_label}] Closing clips...");
                            for i, clip in enumerate(video_clips):
                                try:
                                    if clip:
                                      if clip.audio: clip.audio.close()
                                      clip.close()
                                except Exception as e_close: logger.warning(f"   ⚠️ [{timeline_label}] Clip close err {i}: {e_close}")
                            if final_timeline_video:
                                try:
                                     if final_timeline_video.audio: final_timeline_video.audio.close()
                                     final_timeline_video.close()
                                except Exception as e_close_final: logger.warning(f"   ⚠️ [{timeline_label}] Final vid close err: {e_close_final}")
                    elif not video_clips: logger.warning(f"[{timeline_label}] No clips. Skip assembly."); st.warning(f"No scenes for {timeline_label}. No video.", icon="🚫"); all_timelines_successful = False
                    else: error_count = len(segments) - scene_success_count; logger.warning(f"[{timeline_label}] {error_count} scene err(s). Skip assembly."); st.warning(f"{timeline_label}: {error_count} err(s). Video not assembled.", icon="⚠️"); all_timelines_successful = False
                    if generation_errors[timeline_id]: logger.error(f"Errors {timeline_label}: {generation_errors[timeline_id]}")

                # --- End of Timelines Loop ---
                overall_duration = time.time() - overall_start_time
                if all_timelines_successful and final_video_paths: status_msg = f"Complete! ({len(final_video_paths)} videos in {overall_duration:.2f}s)"; status.update(label=status_msg, state="complete", expanded=False); logger.info(status_msg)
                elif final_video_paths: status_msg = f"Partially Complete ({len(final_video_paths)} videos, errors). {overall_duration:.2f}s"; status.update(label=status_msg, state="warning", expanded=True); logger.warning(status_msg)
                else: status_msg = f"Failed. No videos. {overall_duration:.2f}s"; status.update(label=status_msg, state="error", expanded=True); logger.error(status_msg)

            # --- 3. Display Results ---
            st.header("🎬 Generated Timelines")
            if final_video_paths:
                sorted_timeline_ids = sorted(final_video_paths.keys()); num_cols = min(len(sorted_timeline_ids), 3); cols = st.columns(num_cols)
                for idx, timeline_id in enumerate(sorted_timeline_ids):
                    col = cols[idx % num_cols]; video_path = final_video_paths[timeline_id]
                    timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None)
                    reason = timeline_data.divergence_reason if timeline_data else "Unknown"
                    with col:
                        st.subheader(f"Timeline {timeline_id}"); st.caption(f"Divergence: {reason}")
                        try:
                            with open(video_path, 'rb') as vf: video_bytes = vf.read()
                            st.video(video_bytes); logger.info(f"Displaying T{timeline_id}")
                            st.download_button(f"Download T{timeline_id}", video_bytes, f"timeline_{timeline_id}.mp4", "video/mp4", key=f"dl_{timeline_id}")
                            if generation_errors.get(timeline_id):
                                with st.expander(f"⚠️ View {len(generation_errors[timeline_id])} Issues"): [st.warning(f"- {err}") for err in generation_errors[timeline_id]]
                        except FileNotFoundError: logger.error(f"Video missing: {video_path}"); st.error(f"Error: Video missing T{timeline_id}.", icon="🚨")
                        except Exception as e: logger.exception(f"Display error {video_path}: {e}"); st.error(f"Display error T{timeline_id}: {e}", icon="🚨")
            else:
                st.warning("No final videos were successfully generated.")
                all_errors = [msg for err_list in generation_errors.values() for msg in err_list]
                if all_errors:
                    st.subheader("Summary of Generation Issues");
                    with st.expander("View All Errors", expanded=True):
                        for tid, errors in generation_errors.items():
                            if errors: st.error(f"T{tid}:"); [st.error(f"  - {msg}") for msg in errors]

            # --- 4. Cleanup ---
            st.info(f"Attempting cleanup: {temp_dir}")
            try: shutil.rmtree(temp_dir); logger.info(f"βœ… Temp dir removed: {temp_dir}"); st.success("βœ… Temp files cleaned.")
            except Exception as e: logger.error(f"⚠️ Failed remove temp dir {temp_dir}: {e}"); st.warning(f"Could not remove temp files: {temp_dir}.", icon="⚠️")

        elif not chrono_response: logger.error("Story gen/validation failed.")
        else: st.error("Unexpected issue post-gen.", icon="πŸ›‘"); logger.error("Chrono_response truthy but invalid.")

else: st.info("Configure settings and click '✨ Generate ChronoWeave ✨' to start.")