Spaces:
Sleeping
Sleeping
File size: 31,367 Bytes
62f88b4 3c37f6f 62f88b4 3c37f6f 90e64d1 62f88b4 3c37f6f 09b00d7 62f88b4 3c37f6f 62f88b4 3c37f6f 62f88b4 3c37f6f 62f88b4 3c37f6f e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 62f88b4 3c37f6f 62f88b4 3c37f6f 62f88b4 3c37f6f e9679bf 90e64d1 62f88b4 3c37f6f e9679bf 62f88b4 09b00d7 62f88b4 e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 90e64d1 e9679bf 09b00d7 e9679bf 09b00d7 62f88b4 e9679bf 62f88b4 90e64d1 3c37f6f 394ae41 e9679bf 394ae41 e9679bf 394ae41 90e64d1 3c37f6f 394ae41 3c37f6f 394ae41 e9679bf 394ae41 3c37f6f 394ae41 3c37f6f 394ae41 90e64d1 e9679bf 90e64d1 62f88b4 3c37f6f e9679bf 62f88b4 e9679bf 3c37f6f 394ae41 3c37f6f 90e64d1 e9679bf 62f88b4 394ae41 e9679bf 62f88b4 3c37f6f 62f88b4 394ae41 e9679bf 394ae41 3c37f6f 62f88b4 e9679bf 3c37f6f e9679bf 90e64d1 e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 62f88b4 e9679bf 3c37f6f 90e64d1 3c37f6f e9679bf 62f88b4 3c37f6f e9679bf 394ae41 e9679bf 62f88b4 e9679bf 394ae41 62f88b4 394ae41 6c3bf7e 394ae41 6c3bf7e 394ae41 6c3bf7e 394ae41 09b00d7 3c37f6f e9679bf 6c3bf7e e9679bf 3c37f6f e9679bf 62f88b4 90e64d1 e9679bf 62f88b4 394ae41 e9679bf 394ae41 e9679bf 62f88b4 3c37f6f 394ae41 3c37f6f 90e64d1 3c37f6f 90e64d1 3c37f6f 62f88b4 90e64d1 e9679bf 3c37f6f 62f88b4 e9679bf 62f88b4 e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 62f88b4 3c37f6f e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 3c37f6f 6c3bf7e 3c37f6f 90e64d1 394ae41 09b00d7 62f88b4 3c37f6f e9679bf 3c37f6f e9679bf 3c37f6f e9679bf 3c37f6f 394ae41 e9679bf 394ae41 3c37f6f e9679bf 3c37f6f e9679bf 394ae41 90e64d1 3c37f6f 394ae41 e9679bf 09b00d7 e9679bf 3c37f6f e9679bf 09b00d7 90e64d1 e9679bf 3c37f6f 09b00d7 e9679bf 62f88b4 90e64d1 e9679bf 62f88b4 e9679bf 3c37f6f e9679bf 09b00d7 3c37f6f 6c3bf7e 09b00d7 e9679bf 3c37f6f 09b00d7 3c37f6f e9679bf 3c37f6f e9679bf 62f88b4 3c37f6f 62f88b4 e9679bf 3c37f6f e9679bf 3c37f6f 394ae41 3c37f6f 394ae41 3c37f6f 394ae41 e9679bf 394ae41 3c37f6f e9679bf 62f88b4 90e64d1 3c37f6f e9679bf 09b00d7 394ae41 3c37f6f 394ae41 e9679bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Copyright 2025 Google LLC. Based on work by Yousif Ahmed.
# Concept: ChronoWeave - Branching Narrative Generation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
import streamlit as st
import google.generativeai as genai
import os
import json
import numpy as np
from io import BytesIO
import time
import wave
import contextlib
import asyncio
import uuid # For unique identifiers
import shutil # For directory operations
import logging # For better logging
# Image handling
from PIL import Image
# Pydantic for data validation
from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator
from typing import List, Optional, Literal, Dict, Any
# Video and audio processing
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
# from moviepy.config import change_settings # Potential for setting imagemagick path if needed
# Type hints
import typing_extensions as typing
# Async support for Streamlit/Google API
import nest_asyncio
nest_asyncio.apply() # Apply patch for asyncio in environments like Streamlit/Jupyter
# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Configuration ---
st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded")
st.title("π ChronoWeave: Advanced Branching Narrative Generator")
st.markdown("""
Generate multiple, branching story timelines from a single theme using AI, complete with images and narration.
*Based on the work of Yousif Ahmed. Copyright 2025 Google LLC.*
""")
# --- Constants ---
# Text/JSON Model
TEXT_MODEL_ID = "models/gemini-1.5-flash" # Or "gemini-1.5-pro"
# Audio Model Config
AUDIO_MODEL_ID = "models/gemini-1.5-flash" # Model used for audio tasks
AUDIO_SAMPLING_RATE = 24000
# Image Model Config
IMAGE_MODEL_ID = "imagen-3" # <<< YOUR IMAGE MODEL
DEFAULT_ASPECT_RATIO = "1:1"
# Video Config
VIDEO_FPS = 24
VIDEO_CODEC = "libx264"
AUDIO_CODEC = "aac"
# File Management
TEMP_DIR_BASE = ".chrono_temp"
# --- API Key Handling ---
GOOGLE_API_KEY = None
try:
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
logger.info("Google API Key loaded from Streamlit secrets.")
except KeyError:
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
if GOOGLE_API_KEY:
logger.info("Google API Key loaded from environment variable.")
else:
st.error("π¨ **Google API Key Not Found!** Please configure it.", icon="π¨")
st.stop()
# --- Initialize Google Clients ---
# Initialize handles for Text, Audio (using Text model), and Image models
try:
genai.configure(api_key=GOOGLE_API_KEY)
logger.info("Configured google-generativeai with API key.")
# Handle for Text/JSON Generation
client_standard = genai.GenerativeModel(TEXT_MODEL_ID)
logger.info(f"Initialized text/JSON model handle: {TEXT_MODEL_ID}.")
# Handle for Audio Generation (uses a text-capable model via connect)
live_model = genai.GenerativeModel(AUDIO_MODEL_ID)
logger.info(f"Initialized audio model handle: {AUDIO_MODEL_ID}.")
# Handle for Image Generation <<<<------ NEW/CORRECTED
image_model = genai.GenerativeModel(IMAGE_MODEL_ID)
logger.info(f"Initialized image model handle: {IMAGE_MODEL_ID}.")
except AttributeError as ae:
logger.exception("AttributeError during Google AI Client Initialization.")
st.error(f"π¨ Initialization Error: {ae}. Ensure library is up-to-date.", icon="π¨")
st.stop()
except Exception as e:
# Catch potential errors if a model ID is invalid or inaccessible
logger.exception("Failed to initialize Google AI Clients/Models.")
st.error(f"π¨ Failed to initialize Google AI Clients/Models: {e}", icon="π¨")
st.stop()
# --- Define Pydantic Schemas (Using V2 Syntax) ---
class StorySegment(BaseModel):
scene_id: int = Field(..., ge=0)
image_prompt: str = Field(..., min_length=10, max_length=250)
audio_text: str = Field(..., min_length=5, max_length=150)
character_description: str = Field(..., max_length=250)
timeline_visual_modifier: Optional[str] = Field(None, max_length=50)
@field_validator('image_prompt')
@classmethod
def image_prompt_no_humans(cls, v: str) -> str:
if any(word in v.lower() for word in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]):
logger.warning(f"Image prompt '{v[:50]}...' may contain human descriptions.")
return v
class Timeline(BaseModel):
timeline_id: int = Field(..., ge=0)
divergence_reason: str = Field(..., min_length=5) # Relying on prompt for 1st timeline
segments: List[StorySegment] = Field(..., min_items=1)
class ChronoWeaveResponse(BaseModel):
core_theme: str = Field(..., min_length=5)
timelines: List[Timeline] = Field(..., min_items=1)
total_scenes_per_timeline: int = Field(..., gt=0)
@model_validator(mode='after')
def check_timeline_segment_count(self) -> 'ChronoWeaveResponse':
expected_scenes = self.total_scenes_per_timeline
for i, timeline in enumerate(self.timelines):
if len(timeline.segments) != expected_scenes:
raise ValueError(f"Timeline {i} ID {timeline.timeline_id}: Expected {expected_scenes} segments, found {len(timeline.segments)}.")
return self
# --- Helper Functions ---
@contextlib.contextmanager
def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2):
"""Context manager to safely write WAV files."""
wf = None
try:
wf = wave.open(filename, "wb")
wf.setnchannels(channels); wf.setsampwidth(sample_width); wf.setframerate(rate)
yield wf
except Exception as e: logger.error(f"Error opening/configuring wave file {filename}: {e}"); raise
finally:
if wf:
try: wf.close()
except Exception as e_close: logger.error(f"Error closing wave file {filename}: {e_close}")
async def generate_audio_live_async(api_text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]:
"""Generates audio using Gemini Live API (async version) via the GenerativeModel."""
collected_audio = bytearray(); task_id = os.path.basename(output_filename).split('.')[0]
logger.info(f"ποΈ [{task_id}] Requesting audio: '{api_text[:60]}...'")
try:
config = {"response_modalities": ["AUDIO"], "audio_config": {"audio_encoding": "LINEAR16", "sample_rate_hertz": AUDIO_SAMPLING_RATE}}
directive_prompt = f"Narrate directly: \"{api_text}\"" # Shorter directive
async with live_model.connect(config=config) as session:
await session.send_request([directive_prompt])
async for response in session.stream_content():
if response.audio_chunk and response.audio_chunk.data: collected_audio.extend(response.audio_chunk.data)
if hasattr(response, 'error') and response.error: logger.error(f" β [{task_id}] Audio stream error: {response.error}"); st.error(f"Audio stream error {task_id}: {response.error}", icon="π"); return None
if not collected_audio: logger.warning(f"β οΈ [{task_id}] No audio data received."); st.warning(f"No audio data for {task_id}.", icon="π"); return None
with wave_file_writer(output_filename, rate=AUDIO_SAMPLING_RATE) as wf: wf.writeframes(bytes(collected_audio))
logger.info(f" β
[{task_id}] Audio saved: {os.path.basename(output_filename)} ({len(collected_audio)} bytes)")
return output_filename
except genai.types.generation_types.BlockedPromptException as bpe: logger.error(f" β [{task_id}] Audio blocked: {bpe}"); st.error(f"Audio blocked {task_id}.", icon="π"); return None
except Exception as e: logger.exception(f" β [{task_id}] Audio failed: {e}"); st.error(f"Audio failed {task_id}: {e}", icon="π"); return None
def generate_story_sequence_chrono(theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = "") -> Optional[ChronoWeaveResponse]:
"""Generates branching story sequences using Gemini structured output and validates with Pydantic."""
st.info(f"π Generating {num_timelines} timeline(s) x {num_scenes} scenes for: '{theme}'...")
logger.info(f"Requesting story structure: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}")
divergence_instruction = (
f"Introduce clear points of divergence between timelines, after the first scene if possible. "
f"Use hint if provided: '{divergence_prompt}'. "
f"State divergence reason clearly. **For timeline_id 0, use 'Initial path' or 'Baseline scenario'.**" # Explicit instruction for first timeline
)
prompt = f"""
Act as narrative designer. Create story based on theme: "{theme}".
**Instructions:**
1. Generate exactly **{num_timelines}** timelines.
2. Each timeline exactly **{num_scenes}** scenes.
3. **NO humans/humanoids**. Focus: animals, fantasy creatures, animated objects, nature.
4. {divergence_instruction}
5. Maintain consistent style: **'Simple, friendly kids animation, bright colors, rounded shapes'**, unless `timeline_visual_modifier` alters it.
6. `audio_text`: single concise sentence (max 30 words).
7. `image_prompt`: descriptive, concise (target 15-35 words MAX). Focus on scene elements. **AVOID repeating general style description**.
8. `character_description`: VERY brief description of characters in scene prompt (name, features). Target < 20 words total.
**Output Format:** ONLY valid JSON object adhering to schema. No text before/after.
**JSON Schema:** ```json\n{json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)}\n```"""
try:
response = client_standard.generate_content(contents=prompt, generation_config=genai.types.GenerationConfig(response_mime_type="application/json", temperature=0.7))
try: raw_data = json.loads(response.text)
except json.JSONDecodeError as json_err: logger.error(f"Failed JSON decode: {json_err}\nResponse:\n{response.text}"); st.error(f"π¨ Failed parse story: {json_err}", icon="π"); st.text_area("Problem Response:", response.text, height=150); return None
except Exception as e: logger.error(f"Error processing text: {e}"); st.error(f"π¨ Error processing AI response: {e}", icon="π"); return None
try:
validated_data = ChronoWeaveResponse.model_validate(raw_data)
logger.info("β
Story structure generated and validated successfully!")
st.success("β
Story structure generated and validated!")
return validated_data
except ValidationError as val_err: logger.error(f"JSON validation failed: {val_err}\nData:\n{json.dumps(raw_data, indent=2)}"); st.error(f"π¨ Generated structure invalid: {val_err}", icon="π§¬"); st.json(raw_data); return None
except genai.types.generation_types.BlockedPromptException as bpe: logger.error(f"Story gen blocked: {bpe}"); st.error("π¨ Story prompt blocked.", icon="π«"); return None
except Exception as e: logger.exception("Error during story gen:"); st.error(f"π¨ Story gen error: {e}", icon="π₯"); return None
def generate_image_imagen(prompt: str, aspect_ratio: str = "1:1", task_id: str = "IMG") -> Optional[Image.Image]:
"""Generates an image using the dedicated image model handle."""
logger.info(f"πΌοΈ [{task_id}] Requesting image: '{prompt[:70]}...' (Aspect: {aspect_ratio})")
full_prompt = (f"Simple kids animation style, bright colors, rounded shapes. NO humans/humanoids. Aspect ratio {aspect_ratio}. Scene: {prompt}")
try:
# Use the dedicated image_model handle <<<<<------ CORRECTED CALL
response = image_model.generate_content(
full_prompt, generation_config=genai.types.GenerationConfig(candidate_count=1)
)
image_bytes, safety_ratings, block_reason, finish_reason = None, [], None, None
if hasattr(response, 'candidates') and response.candidates:
candidate = response.candidates[0]
if hasattr(candidate, 'finish_reason'): finish_reason = getattr(candidate.finish_reason, 'name', str(candidate.finish_reason))
if hasattr(candidate, 'content') and candidate.content and hasattr(candidate.content, 'parts') and candidate.content.parts:
part = candidate.content.parts[0]
if hasattr(part, 'inline_data') and part.inline_data and hasattr(part.inline_data, 'data'): image_bytes = part.inline_data.data
if hasattr(candidate, 'safety_ratings'): safety_ratings = candidate.safety_ratings
if hasattr(response, 'prompt_feedback') and response.prompt_feedback:
if hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason.name != 'BLOCK_REASON_UNSPECIFIED': block_reason = response.prompt_feedback.block_reason.name
if hasattr(response.prompt_feedback, 'safety_ratings'): safety_ratings.extend(response.prompt_feedback.safety_ratings)
if image_bytes:
try:
image = Image.open(BytesIO(image_bytes)); logger.info(f" β
[{task_id}] Image generated.")
filtered_ratings = [f"{r.category.name}: {r.probability.name}" for r in safety_ratings if hasattr(r,'probability') and r.probability.name != 'NEGLIGIBLE']
if filtered_ratings: logger.warning(f" β οΈ [{task_id}] Image flagged: {', '.join(filtered_ratings)}."); st.warning(f"Image {task_id} flagged: {', '.join(filtered_ratings)}", icon="β οΈ")
return image
except Exception as img_err: logger.error(f" β [{task_id}] Img decode error: {img_err}"); st.warning(f"Decode image data {task_id} failed.", icon="πΌοΈ"); return None
else:
fail_reason = "Unknown reason."
if block_reason: fail_reason = f"Blocked ({block_reason})."
elif finish_reason and finish_reason not in ['STOP', 'FINISH_REASON_UNSPECIFIED']: fail_reason = f"Finished early ({finish_reason})."
else:
filtered_ratings = [f"{r.category.name}: {r.probability.name}" for r in safety_ratings if hasattr(r,'probability') and r.probability.name != 'NEGLIGIBLE']
if filtered_ratings: fail_reason = f"Safety filters: {', '.join(filtered_ratings)}."
# Log full response only if reason remains unknown
if fail_reason == "Unknown reason.": logger.warning(f" β οΈ [{task_id}] Full API response object: {response}") # Keep this debug log for now
logger.warning(f" β οΈ [{task_id}] No image data. Reason: {fail_reason} Prompt: '{prompt[:70]}...'")
st.warning(f"No image data {task_id}. Reason: {fail_reason}", icon="πΌοΈ"); return None
except genai.types.generation_types.BlockedPromptException as bpe: logger.error(f" β [{task_id}] Image blocked (exception): {bpe}"); st.error(f"Image blocked {task_id} (exception).", icon="π«"); return None
except Exception as e: logger.exception(f" β [{task_id}] Image gen failed: {e}"); st.error(f"Image gen failed {task_id}: {e}", icon="πΌοΈ"); return None
# --- Streamlit UI Elements ---
st.sidebar.header("βοΈ Configuration")
if GOOGLE_API_KEY: st.sidebar.success("Google API Key Loaded", icon="β
")
else: st.sidebar.error("Google API Key Missing!", icon="π¨")
theme = st.sidebar.text_input("π Story Theme:", "A curious squirrel finds a mysterious, glowing acorn")
num_scenes = st.sidebar.slider("π¬ Scenes per Timeline:", min_value=2, max_value=7, value=3)
num_timelines = st.sidebar.slider("πΏ Number of Timelines:", min_value=1, max_value=4, value=2)
divergence_prompt = st.sidebar.text_input("βοΈ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?")
st.sidebar.subheader("π¨ Visual & Audio Settings")
aspect_ratio = st.sidebar.selectbox("πΌοΈ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)
audio_voice = None
generate_button = st.sidebar.button("β¨ Generate ChronoWeave β¨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True)
st.sidebar.markdown("---")
st.sidebar.info("β³ Generation can take several minutes.", icon="β³")
st.sidebar.markdown(f"<small>Txt:{TEXT_MODEL_ID}, Img:{IMAGE_MODEL_ID}, Aud:{AUDIO_MODEL_ID}</small>", unsafe_allow_html=True)
# --- Main Logic ---
if generate_button:
if not theme: st.error("Please enter a story theme.", icon="π")
else:
run_id = str(uuid.uuid4()).split('-')[0]; temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}")
try: os.makedirs(temp_dir, exist_ok=True); logger.info(f"Created temp dir: {temp_dir}")
except OSError as e: st.error(f"π¨ Failed create temp dir {temp_dir}: {e}", icon="π"); st.stop()
final_video_paths = {}; generation_errors = {}
# --- 1. Generate Narrative Structure ---
chrono_response: Optional[ChronoWeaveResponse] = None
with st.spinner("Generating narrative structure... π€"): chrono_response = generate_story_sequence_chrono(theme, num_scenes, num_timelines, divergence_prompt)
if chrono_response:
# --- 2. Process Each Timeline ---
overall_start_time = time.time(); all_timelines_successful = True
with st.status("Generating assets and composing videos...", expanded=True) as status:
for timeline_index, timeline in enumerate(chrono_response.timelines):
timeline_id, divergence, segments = timeline.timeline_id, timeline.divergence_reason, timeline.segments
timeline_label = f"Timeline {timeline_id}"; st.subheader(f"Processing {timeline_label}: {divergence}")
logger.info(f"--- Processing {timeline_label} (Idx: {timeline_index}) ---"); generation_errors[timeline_id] = []
temp_image_files, temp_audio_files, video_clips = {}, {}, []
timeline_start_time = time.time(); scene_success_count = 0
for scene_index, segment in enumerate(segments):
scene_id = segment.scene_id; task_id = f"T{timeline_id}_S{scene_id}"
status.update(label=f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
st.markdown(f"--- **Scene {scene_id + 1} ({task_id})** ---")
logger.info(f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
scene_has_error = False
st.write(f" *Img Prompt:* {segment.image_prompt}" + (f" *(Mod: {segment.timeline_visual_modifier})*" if segment.timeline_visual_modifier else "")); st.write(f" *Audio Text:* {segment.audio_text}")
# --- 2a. Image Generation ---
generated_image: Optional[Image.Image] = None
with st.spinner(f"[{task_id}] Generating image... π¨"):
combined_prompt = segment.image_prompt
if segment.character_description: combined_prompt += f" Featuring: {segment.character_description}"
if segment.timeline_visual_modifier: combined_prompt += f" Style hint: {segment.timeline_visual_modifier}."
generated_image = generate_image_imagen(combined_prompt, aspect_ratio, task_id)
if generated_image:
image_path = os.path.join(temp_dir, f"{task_id}_image.png")
try: generated_image.save(image_path); temp_image_files[scene_id] = image_path; st.image(generated_image, width=180, caption=f"Scene {scene_id+1}")
except Exception as e: logger.error(f" β [{task_id}] Img save error: {e}"); st.error(f"Save image {task_id} failed.", icon="πΎ"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Img save fail.")
else: scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Img gen fail."); continue
# --- 2b. Audio Generation ---
generated_audio_path: Optional[str] = None
if not scene_has_error:
with st.spinner(f"[{task_id}] Generating audio... π"):
audio_path_temp = os.path.join(temp_dir, f"{task_id}_audio.wav")
try: generated_audio_path = asyncio.run(generate_audio_live_async(segment.audio_text, audio_path_temp, audio_voice))
except RuntimeError as e: logger.error(f" β [{task_id}] Asyncio error: {e}"); st.error(f"Asyncio audio error {task_id}: {e}", icon="β‘"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio async err.")
except Exception as e: logger.exception(f" β [{task_id}] Audio error: {e}"); st.error(f"Audio error {task_id}: {e}", icon="π₯"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio gen err.")
if generated_audio_path:
temp_audio_files[scene_id] = generated_audio_path
try:
with open(generated_audio_path, 'rb') as ap: st.audio(ap.read(), format='audio/wav')
except Exception as e: logger.warning(f" β οΈ [{task_id}] Audio preview error: {e}")
else:
scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio gen fail.")
if scene_id in temp_image_files and os.path.exists(temp_image_files[scene_id]):
try: os.remove(temp_image_files[scene_id]); logger.info(f" ποΈ [{task_id}] Removed img due to audio fail."); del temp_image_files[scene_id]
except OSError as e: logger.warning(f" β οΈ [{task_id}] Failed remove img after audio fail: {e}")
continue
# --- 2c. Create Video Clip ---
if not scene_has_error and scene_id in temp_image_files and scene_id in temp_audio_files:
st.write(f" π¬ Creating clip S{scene_id+1}...")
img_path, aud_path = temp_image_files[scene_id], temp_audio_files[scene_id]
audio_clip_instance, image_clip_instance, composite_clip = None, None, None
try:
if not os.path.exists(img_path): raise FileNotFoundError(f"Img missing: {img_path}")
if not os.path.exists(aud_path): raise FileNotFoundError(f"Aud missing: {aud_path}")
audio_clip_instance = AudioFileClip(aud_path); np_image = np.array(Image.open(img_path))
image_clip_instance = ImageClip(np_image).set_duration(audio_clip_instance.duration)
composite_clip = image_clip_instance.set_audio(audio_clip_instance)
video_clips.append(composite_clip); logger.info(f" β
[{task_id}] Clip created (Dur: {audio_clip_instance.duration:.2f}s).")
st.write(f" β
Clip created (Dur: {audio_clip_instance.duration:.2f}s)."); scene_success_count += 1
except Exception as e:
logger.exception(f" β [{task_id}] Failed clip creation: {e}"); st.error(f"Failed clip {task_id}: {e}", icon="π¬")
scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Clip fail.")
if audio_clip_instance: audio_clip_instance.close();
if image_clip_instance: image_clip_instance.close()
try:
if os.path.exists(img_path): os.remove(img_path)
if os.path.exists(aud_path): os.remove(aud_path)
except OSError as e_rem: logger.warning(f" β οΈ [{task_id}] Failed remove files after clip err: {e_rem}")
# --- 2d. Assemble Timeline Video ---
timeline_duration = time.time() - timeline_start_time
if video_clips and scene_success_count == len(segments):
status.update(label=f"Composing video {timeline_label}...")
st.write(f"ποΈ Assembling video {timeline_label}..."); logger.info(f"ποΈ Assembling video {timeline_label}...")
output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4"); final_timeline_video = None
try:
final_timeline_video = concatenate_videoclips(video_clips, method="compose")
final_timeline_video.write_videofile(output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None)
final_video_paths[timeline_id] = output_filename; logger.info(f" β
[{timeline_label}] Video saved: {os.path.basename(output_filename)}")
st.success(f"β
Video {timeline_label} completed in {timeline_duration:.2f}s.")
except Exception as e:
logger.exception(f" β [{timeline_label}] Video assembly failed: {e}"); st.error(f"Assemble video {timeline_label} failed: {e}", icon="πΌ")
all_timelines_successful = False; generation_errors[timeline_id].append(f"T{timeline_id}: Assembly failed.")
finally:
logger.debug(f"[{timeline_label}] Closing clips...");
for i, clip in enumerate(video_clips):
try:
if clip:
if clip.audio: clip.audio.close()
clip.close()
except Exception as e_close: logger.warning(f" β οΈ [{timeline_label}] Clip close err {i}: {e_close}")
if final_timeline_video:
try:
if final_timeline_video.audio: final_timeline_video.audio.close()
final_timeline_video.close()
except Exception as e_close_final: logger.warning(f" β οΈ [{timeline_label}] Final vid close err: {e_close_final}")
elif not video_clips: logger.warning(f"[{timeline_label}] No clips. Skip assembly."); st.warning(f"No scenes for {timeline_label}. No video.", icon="π«"); all_timelines_successful = False
else: error_count = len(segments) - scene_success_count; logger.warning(f"[{timeline_label}] {error_count} scene err(s). Skip assembly."); st.warning(f"{timeline_label}: {error_count} err(s). Video not assembled.", icon="β οΈ"); all_timelines_successful = False
if generation_errors[timeline_id]: logger.error(f"Errors {timeline_label}: {generation_errors[timeline_id]}")
# --- End of Timelines Loop ---
overall_duration = time.time() - overall_start_time
if all_timelines_successful and final_video_paths: status_msg = f"Complete! ({len(final_video_paths)} videos in {overall_duration:.2f}s)"; status.update(label=status_msg, state="complete", expanded=False); logger.info(status_msg)
elif final_video_paths: status_msg = f"Partially Complete ({len(final_video_paths)} videos, errors). {overall_duration:.2f}s"; status.update(label=status_msg, state="warning", expanded=True); logger.warning(status_msg)
else: status_msg = f"Failed. No videos. {overall_duration:.2f}s"; status.update(label=status_msg, state="error", expanded=True); logger.error(status_msg)
# --- 3. Display Results ---
st.header("π¬ Generated Timelines")
if final_video_paths:
sorted_timeline_ids = sorted(final_video_paths.keys()); num_cols = min(len(sorted_timeline_ids), 3); cols = st.columns(num_cols)
for idx, timeline_id in enumerate(sorted_timeline_ids):
col = cols[idx % num_cols]; video_path = final_video_paths[timeline_id]
timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None)
reason = timeline_data.divergence_reason if timeline_data else "Unknown"
with col:
st.subheader(f"Timeline {timeline_id}"); st.caption(f"Divergence: {reason}")
try:
with open(video_path, 'rb') as vf: video_bytes = vf.read()
st.video(video_bytes); logger.info(f"Displaying T{timeline_id}")
st.download_button(f"Download T{timeline_id}", video_bytes, f"timeline_{timeline_id}.mp4", "video/mp4", key=f"dl_{timeline_id}")
if generation_errors.get(timeline_id):
with st.expander(f"β οΈ View {len(generation_errors[timeline_id])} Issues"): [st.warning(f"- {err}") for err in generation_errors[timeline_id]]
except FileNotFoundError: logger.error(f"Video missing: {video_path}"); st.error(f"Error: Video missing T{timeline_id}.", icon="π¨")
except Exception as e: logger.exception(f"Display error {video_path}: {e}"); st.error(f"Display error T{timeline_id}: {e}", icon="π¨")
else:
st.warning("No final videos were successfully generated.")
all_errors = [msg for err_list in generation_errors.values() for msg in err_list]
if all_errors:
st.subheader("Summary of Generation Issues");
with st.expander("View All Errors", expanded=True):
for tid, errors in generation_errors.items():
if errors: st.error(f"T{tid}:"); [st.error(f" - {msg}") for msg in errors]
# --- 4. Cleanup ---
st.info(f"Attempting cleanup: {temp_dir}")
try: shutil.rmtree(temp_dir); logger.info(f"β
Temp dir removed: {temp_dir}"); st.success("β
Temp files cleaned.")
except Exception as e: logger.error(f"β οΈ Failed remove temp dir {temp_dir}: {e}"); st.warning(f"Could not remove temp files: {temp_dir}.", icon="β οΈ")
elif not chrono_response: logger.error("Story gen/validation failed.")
else: st.error("Unexpected issue post-gen.", icon="π"); logger.error("Chrono_response truthy but invalid.")
else: st.info("Configure settings and click 'β¨ Generate ChronoWeave β¨' to start.") |