File size: 36,826 Bytes
287c9ca e0b9b11 92cb699 5089920 92cb699 5089920 9840152 5089920 990e23e 92cb699 5089920 92cb699 200c5c4 5089920 f13d4b2 5089920 f13d4b2 5089920 f13d4b2 5089920 f13d4b2 5089920 e0b9b11 5089920 4c2220b f13d4b2 287c9ca 92cb699 e0b9b11 5089920 e0b9b11 5089920 e0b9b11 5089920 e0b9b11 5089920 e0b9b11 f02ab98 5089920 e0b9b11 5089920 92cb699 5089920 e0b9b11 f02ab98 5089920 200c5c4 09d5c67 5089920 e0b9b11 5089920 e0b9b11 92cb699 f13d4b2 5089920 e0b9b11 5089920 e0b9b11 5089920 50c620f 5089920 e0b9b11 5089920 e0b9b11 5089920 e0b9b11 5089920 e0b9b11 5089920 92cb699 5089920 92cb699 29c2122 5089920 e0b9b11 5089920 e0b9b11 200c5c4 5089920 e0b9b11 5089920 e0b9b11 92cb699 5089920 92cb699 f13d4b2 5089920 e0b9b11 5089920 9840152 200c5c4 5089920 92cb699 9840152 92cb699 f13d4b2 5089920 92cb699 e0b9b11 92cb699 9840152 b97795f 5089920 09d5c67 92cb699 9d84ba9 5089920 200c5c4 5089920 92cb699 5089920 92cb699 5089920 200c5c4 92cb699 5089920 200c5c4 92cb699 5089920 92cb699 5089920 29c2122 e0b9b11 5089920 f13d4b2 e0b9b11 f13d4b2 5089920 9840152 754c854 5089920 200c5c4 5089920 200c5c4 5089920 200c5c4 5089920 200c5c4 5089920 200c5c4 5089920 92cb699 5089920 92cb699 5089920 92cb699 9840152 5089920 92cb699 5089920 8583908 5089920 92cb699 5089920 92cb699 5089920 b97795f 5089920 200c5c4 5089920 e0b9b11 5089920 92cb699 5089920 754c854 5089920 5e4272a 5089920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'): # Pillow 8
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
# --- END MONKEY PATCH ---
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# --- ElevenLabs Client Import ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient
Voice = ImportedVoice
VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True
logger.info("ElevenLabs client components imported.")
except Exception as e_eleven:
logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio generation disabled.")
# --- RunwayML Client Import (Placeholder) ---
RUNWAYML_SDK_IMPORTED = False
RunwayMLClient = None # Placeholder for the actual RunwayML client class
try:
# This is a hypothetical import. Replace with actual RunwayML SDK import if available.
# Example: from runwayml import RunwayClient as ImportedRunwayMLClient
# RunwayMLClient = ImportedRunwayMLClient
# RUNWAYML_SDK_IMPORTED = True
# logger.info("RunwayML SDK (placeholder) imported.")
logger.info("RunwayML SDK import is a placeholder. Actual SDK needed for Runway features.")
except ImportError:
logger.warning("RunwayML SDK (placeholder) not found. RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML features disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "arial.ttf"
font_paths_to_try = [
self.font_filename,
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
f"/System/Library/Fonts/Supplemental/Arial.ttf",
f"C:/Windows/Fonts/arial.ttf",
f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20
self.video_overlay_font_size = 30
self.video_overlay_font_color = 'white'
self.video_overlay_font = 'Liberation-Sans-Bold' # For MoviePy TextClip
try:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
if self.font_path_pil: logger.info(f"Pillow font loaded: {self.font_path_pil}.")
else: logger.warning("Using default Pillow font."); self.font_size_pil = 10
except IOError:
logger.warning("Pillow font error. Using default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
# <<< RUNWAYML START >>>
self.runway_api_key = None; self.USE_RUNWAYML = False
self.runway_client = None # Placeholder for the actual RunwayML client instance
# <<< RUNWAYML END >>>
logger.info("VisualEngine initialized.")
def set_openai_api_key(self,k):
self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
self.elevenlabs_api_key=api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
self.USE_ELEVENLABS=bool(self.elevenlabs_client)
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
def set_pexels_api_key(self,k):
self.pexels_api_key=k; self.USE_PEXELS=bool(k)
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
# <<< RUNWAYML START >>>
def set_runway_api_key(self, k):
self.runway_api_key = k
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient: # Assuming RunwayMLClient is the SDK's client class
try:
# self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
self.USE_RUNWAYML = True # Assume success for placeholder
logger.info(f"RunwayML Client (Placeholder) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
except Exception as e:
logger.error(f"RunwayML client (Placeholder) init error: {e}. Disabled.", exc_info=True)
self.USE_RUNWAYML = False
elif k and not (RUNWAYML_SDK_IMPORTED and RunwayMLClient):
self.USE_RUNWAYML = True # Allow use with direct HTTP requests if SDK isn't used/available
logger.info("RunwayML API Key set. SDK (Placeholder) not imported/used. Direct API calls would be needed.")
else:
self.USE_RUNWAYML = False
logger.info("RunwayML Disabled (no API key or SDK issue).")
# <<< RUNWAYML END >>>
def _get_text_dimensions(self,text_content,font_obj):
# ... (no changes from your previous version)
if not text_content: return 0,self.font_size_pil
try:
if hasattr(font_obj,'getbbox'): # Pillow 8.0.0+
bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
return w, h if h > 0 else self.font_size_pil
elif hasattr(font_obj,'getsize'): # Older Pillow
w,h=font_obj.getsize(text_content)
return w, h if h > 0 else self.font_size_pil
else: # Should not happen with standard ImageFont objects
return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
except Exception as e:
logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}")
return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2) # Fallback
def _create_placeholder_image_content(self,text_description,filename,size=None):
# ... (no changes from your previous version, ensure filename includes extension e.g. .png)
if size is None: size = self.video_frame_size
img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
if not text_description: text_description="(Placeholder: No prompt text)"
words=text_description.split();current_line=""
for word in words:
test_line=current_line+word+" ";
if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
else:
if current_line: lines.append(current_line.strip());
current_line=word+" "
if current_line.strip(): lines.append(current_line.strip()) # Add last line
if not lines and text_description: lines.append(text_description[:int(max_w//(self.font_size_pil*0.6 +1))]+"..." if text_description else "(Text too long)") # Handle single very long word
elif not lines: lines.append("(Placeholder Text Error)")
_,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
if max_lines_to_display <=0: max_lines_to_display = 1 # Ensure at least one line can be attempted
y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
y_text = y_text_start
for i in range(max_lines_to_display):
line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
if i==6 and max_lines_to_display > 7: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
filepath=os.path.join(self.output_dir,filename);
try:img.save(filepath);return filepath
except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
def _search_pexels_image(self, query, output_filename_base):
# ... (no changes from your previous version, ensure output_filename_base has .png for consistency, it will be replaced)
if not self.USE_PEXELS or not self.pexels_api_key: return None
headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
# Use a more unique filename for Pexels images to avoid clashes if query is similar
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
filepath = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Searching Pexels for: '{query}'"); effective_query = " ".join(query.split()[:5]); params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status(); data = response.json()
if data.get("photos") and len(data["photos"]) > 0:
photo_url = data["photos"][0]["src"]["large2x"] # Using large2x for better quality
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath); logger.info(f"Pexels image saved: {filepath}"); return filepath
else: logger.info(f"No photos found on Pexels for query: '{effective_query}'")
except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
return None
# <<< RUNWAYML START >>>
def _generate_video_clip_with_runwayml(self, prompt_text, scene_identifier_filename_base, target_duration_seconds=4, input_image_path=None):
"""
Placeholder for generating a video clip using RunwayML.
This needs to be implemented with the actual RunwayML SDK or API.
"""
if not self.USE_RUNWAYML or not self.runway_api_key:
logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
return None
output_video_filename = scene_identifier_filename_base.replace(".png", ".mp4") # Ensure .mp4 extension
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
logger.info(f"RunwayML Output (Placeholder): {output_video_filepath}")
# --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
# This section is highly dependent on RunwayML's specific API/SDK.
# Example using a hypothetical SDK:
# try:
# if not self.runway_client:
# # self.runway_client = RunwayMLClient(api_key=self.runway_api_key) # Or however it's initialized
# logger.warning("RunwayML client not initialized (Placeholder).")
# # For placeholder, simulate creating a dummy video file
# return self._create_placeholder_video_content(prompt_text, output_video_filename, duration=target_duration_seconds)
# generation_params = {
# "text_prompt": prompt_text,
# "duration_seconds": target_duration_seconds,
# "width": self.video_frame_size[0], # Or Runway's supported sizes
# "height": self.video_frame_size[1],
# # Add other params like seed, motion scale, etc.
# }
# if input_image_path and os.path.exists(input_image_path):
# generation_params["input_image_path"] = input_image_path # For image-to-video
# logger.info(f"Using input image for RunwayML: {input_image_path}")
# task_id = self.runway_client.submit_video_generation_task(**generation_params) # Hypothetical
# logger.info(f"RunwayML task submitted: {task_id}. Polling for completion...")
# while True:
# status = self.runway_client.get_task_status(task_id) # Hypothetical
# if status == "completed":
# video_url = self.runway_client.get_video_url(task_id) # Hypothetical
# video_response = requests.get(video_url, stream=True, timeout=300)
# video_response.raise_for_status()
# with open(output_video_filepath, 'wb') as f:
# for chunk in video_response.iter_content(chunk_size=8192):
# f.write(chunk)
# logger.info(f"RunwayML video downloaded and saved: {output_video_filepath}")
# return output_video_filepath
# elif status in ["failed", "error"]:
# logger.error(f"RunwayML task {task_id} failed.")
# return None
# time.sleep(10) # Poll interval
# except Exception as e:
# logger.error(f"Error during RunwayML video generation: {e}", exc_info=True)
# return None
# --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
# For now, as a placeholder, create a dummy MP4 file with MoviePy
# This allows the rest of the pipeline to be tested.
# **REPLACE THIS WITH ACTUAL RUNWAYML CALLS**
logger.warning("Using PLACEHOLDER video generation for RunwayML.")
return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
"""Creates a short video clip with text as a placeholder."""
if size is None: size = self.video_frame_size
filepath = os.path.join(self.output_dir, filename)
# Create a simple text clip
txt_clip = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font,
bg_color='black', size=size, method='caption').set_duration(duration)
try:
txt_clip.write_videofile(filepath, fps=24, codec='libx264', preset='ultrafast', logger=None)
logger.info(f"Placeholder video saved: {filepath}")
return filepath
except Exception as e:
logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True)
return None
finally:
if hasattr(txt_clip, 'close'): txt_clip.close()
# <<< RUNWAYML END >>>
def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
"""
Generates either an image or a video clip for a scene.
Returns a dictionary: {'path': asset_path, 'type': 'image'/'video', 'error': bool}
"""
# Ensure scene_identifier_filename_base does not have an extension yet, or handle it
base_name, _ = os.path.splitext(scene_identifier_filename_base)
if generate_as_video_clip and self.USE_RUNWAYML:
logger.info(f"Attempting RunwayML video clip generation for {base_name}")
video_path = self._generate_video_clip_with_runwayml(
image_prompt_text, # Use DALL-E prompt also for Runway text-to-video
base_name, # Pass base name, function will add .mp4
target_duration_seconds=runway_target_duration,
input_image_path=input_image_for_runway
)
if video_path and os.path.exists(video_path):
return {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
else:
logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image.")
# Fall through to image generation
# Image Generation (DALL-E, Pexels, Placeholder)
# Ensure image filename has .png
image_filename_with_ext = base_name + ".png"
filepath = os.path.join(self.output_dir, image_filename_with_ext)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_retries = 2
for attempt in range(max_retries):
try:
# ... (DALL-E generation logic - no changes from your previous version) ...
logger.info(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
if revised_prompt: logger.info(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
image_response = requests.get(image_url, timeout=120); image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content));
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
return {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
except openai.RateLimitError as e:
logger.warning(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s..."); time.sleep(5 * (attempt + 1))
if attempt == max_retries - 1: logger.error("Max retries for RateLimitError."); break
except openai.APIError as e: logger.error(f"OpenAI API Error: {e}"); break
except requests.exceptions.RequestException as e: logger.error(f"Requests Error (DALL-E download): {e}"); break
except Exception as e: logger.error(f"Generic error (DALL-E gen): {e}", exc_info=True); break
logger.warning("DALL-E generation failed. Trying Pexels fallback...")
# Pexels or Placeholder if DALL-E failed or disabled
if self.USE_PEXELS:
pexels_query_text = scene_data.get('pexels_search_query_๊ฐ๋
', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext) # Pass filename with extension
if pexels_path:
return {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
logger.warning("Pexels also failed/disabled. Using placeholder image.")
placeholder_path = self._create_placeholder_image_content(
f"[AI/Pexels Failed] {image_prompt_text[:100]}...", image_filename_with_ext
)
if placeholder_path:
return {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text}
else:
return {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_prompt_text}
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
# ... (no changes from your previous version) ...
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
logger.info("ElevenLabs conditions not met (API key, client init, or text). Skipping audio.")
return None
audio_filepath = os.path.join(self.output_dir, output_filename)
try:
logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
audio_stream_method = None
if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
audio_stream_method = self.elevenlabs_client.text_to_speech.stream
logger.info("Using elevenlabs_client.text_to_speech.stream()")
elif hasattr(self.elevenlabs_client, 'generate_stream') : # Older SDK might have this
audio_stream_method = self.elevenlabs_client.generate_stream
logger.info("Using elevenlabs_client.generate_stream()")
elif hasattr(self.elevenlabs_client, 'generate'): # Fallback to non-streaming
logger.info("Using elevenlabs_client.generate() (non-streaming).")
# This one doesn't return a stream, it returns bytes directly
voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
audio_bytes = self.elevenlabs_client.generate(
text=text_to_narrate,
voice=voice_param,
model="eleven_multilingual_v2" # or other suitable model
)
with open(audio_filepath, "wb") as f:
f.write(audio_bytes)
logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}")
return audio_filepath
else:
logger.error("No recognized audio generation method found on ElevenLabs client.")
return None
# If we have a streaming method
if audio_stream_method:
voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
# For Pydantic v1 style for elevenlabs sdk <1.0
# if self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'dict'):
# voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.dict()
# For Pydantic v2 style for elevenlabs skd >=1.0
if self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'model_dump'):
voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
elif self.elevenlabs_voice_settings : # If not a pydantic model, pass as is if supported
voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
audio_data_iterator = audio_stream_method(
text=text_to_narrate,
model_id="eleven_multilingual_v2",
**voice_param_for_stream
)
with open(audio_filepath, "wb") as f:
for chunk in audio_data_iterator:
if chunk: f.write(chunk)
logger.info(f"ElevenLabs audio (streamed) saved: {audio_filepath}")
return audio_filepath
except AttributeError as ae:
logger.error(f"AttributeError with ElevenLabs client: {ae}. SDK method/params might be different.", exc_info=True)
except Exception as e:
logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
"""
Assembles the final video from a list of assets (images or video clips).
Each item in asset_data_list should be a dict like:
{'path': 'path/to/asset', 'type': 'image'|'video', 'duration': desired_scene_duration_in_animatic,
'scene_num': num, 'key_action': 'text'}
"""
if not asset_data_list:
logger.warning("No asset data provided for animatic assembly.")
return None
processed_moviepy_clips = []
narration_audio_clip = None
final_composite_clip = None
total_video_duration_from_assets = sum(item.get('duration', 4.5) for item in asset_data_list)
logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}. Approx total duration: {total_video_duration_from_assets:.2f}s.")
for i, asset_info in enumerate(asset_data_list):
asset_path = asset_info.get('path')
asset_type = asset_info.get('type')
# This 'duration' is the desired display duration of THIS scene in the final animatic
target_scene_duration = asset_info.get('duration', 4.5) # Default if not specified
scene_num = asset_info.get('scene_num', i + 1)
key_action = asset_info.get('key_action', '')
if not (asset_path and os.path.exists(asset_path)):
logger.warning(f"Asset not found for Scene {scene_num}: {asset_path}. Skipping.")
continue
if target_scene_duration <= 0:
logger.warning(f"Scene {scene_num} has invalid duration ({target_scene_duration}s). Skipping.")
continue
current_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path)
if pil_img.mode != 'RGB': pil_img = pil_img.convert('RGB')
img_copy = pil_img.copy()
resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
img_copy.thumbnail(self.video_frame_size, resample_filter)
canvas = Image.new('RGB', self.video_frame_size, (random.randint(0,10), random.randint(0,10), random.randint(0,10)))
xo, yo = (self.video_frame_size[0] - img_copy.width) // 2, (self.video_frame_size[1] - img_copy.height) // 2
canvas.paste(img_copy, (xo, yo))
frame_np = np.array(canvas)
current_clip_base = ImageClip(frame_np).set_duration(target_scene_duration)
# Ken Burns for ImageClips
try:
end_scale = random.uniform(1.03, 1.08)
current_clip = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration)).set_position('center')
except Exception as e_fx:
logger.error(f"Ken Burns error for image {asset_path}: {e_fx}. Using static image.")
current_clip = current_clip_base
elif asset_type == 'video':
source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]))
# Fit video into target_scene_duration:
# If source is shorter, it will play once. If longer, it will be cut.
# For more complex looping/speed adjustments, more logic is needed.
if source_video_clip.duration > target_scene_duration:
current_clip = source_video_clip.subclip(0, target_scene_duration)
elif source_video_clip.duration < target_scene_duration:
# Simple loop if significantly shorter, or just play once if close
if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1 : # Loop if target is >150% of source
current_clip = source_video_clip.loop(duration=target_scene_duration)
else: # Play once, duration will be its own, MoviePy handles concatenation padding
current_clip = source_video_clip.set_duration(source_video_clip.duration) # Explicitly set
logger.info(f"Runway clip for S{scene_num} ({source_video_clip.duration:.2f}s) shorter than target ({target_scene_duration:.2f}s), will play once.")
else: # Durations match
current_clip = source_video_clip
# Ensure the clip has the target duration for consistent concatenation
if current_clip.duration != target_scene_duration:
current_clip = current_clip.set_duration(target_scene_duration)
# Resize if necessary (MoviePy does this on CompositeVideoClip too, but explicit can be good)
if current_clip.size != list(self.video_frame_size):
current_clip = current_clip.resize(self.video_frame_size)
# Close the original source_video_clip if it's different from current_clip (e.g., after subclip)
if current_clip != source_video_clip and hasattr(source_video_clip, 'close'):
source_video_clip.close()
else:
logger.warning(f"Unknown asset type '{asset_type}' for Scene {scene_num}. Skipping.")
continue
# Add text overlay
if current_clip and key_action:
text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
if text_overlay_duration > 0:
txt_clip = TextClip(f"Scene {scene_num}\n{key_action}",
fontsize=self.video_overlay_font_size, color=self.video_overlay_font_color,
font=self.video_overlay_font, bg_color='rgba(10,10,20,0.7)',
method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
kerning=-1, stroke_color='black', stroke_width=1.5
).set_duration(text_overlay_duration).set_start(text_overlay_start).set_position(('center', 0.92), relative=True)
current_clip = CompositeVideoClip([current_clip, txt_clip], size=self.video_frame_size, use_bgclip=True, bg_color=(0,0,0))
if current_clip:
processed_moviepy_clips.append(current_clip)
except Exception as e:
logger.error(f"Error processing asset for Scene {scene_num} ({asset_path}): {e}", exc_info=True)
if current_clip and hasattr(current_clip, 'close'): current_clip.close() # Ensure closure on error
if not processed_moviepy_clips:
logger.warning("No MoviePy clips successfully processed. Aborting animatic assembly.")
return None
transition_duration = 0.75
try:
if len(processed_moviepy_clips) > 1:
final_composite_clip = concatenate_videoclips(processed_moviepy_clips, padding=-transition_duration, method="compose")
elif processed_moviepy_clips:
final_composite_clip = processed_moviepy_clips[0]
else: # Should have been caught above, but defensive
logger.error("No clips available for final concatenation.")
return None
if final_composite_clip.duration > transition_duration * 2:
final_composite_clip = final_composite_clip.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
elif final_composite_clip.duration > 0:
final_composite_clip = final_composite_clip.fx(vfx.fadein, min(transition_duration, final_composite_clip.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path):
try:
narration_audio_clip = AudioFileClip(overall_narration_path)
if final_composite_clip.duration > 0 and narration_audio_clip.duration < final_composite_clip.duration:
logger.info(f"Narration ({narration_audio_clip.duration:.2f}s) shorter than visuals ({final_composite_clip.duration:.2f}s). Trimming video.")
final_composite_clip = final_composite_clip.subclip(0, narration_audio_clip.duration)
elif final_composite_clip.duration <= 0: logger.warning("Video has no duration. Audio not added.")
if narration_audio_clip and final_composite_clip.duration > 0: # Check again
final_composite_clip = final_composite_clip.set_audio(narration_audio_clip)
logger.info("Overall narration added.")
except Exception as e: logger.error(f"Adding narration error: {e}", exc_info=True)
if final_composite_clip and final_composite_clip.duration > 0:
output_path = os.path.join(self.output_dir, output_filename)
logger.info(f"Writing final animatic: {output_path} (Duration: {final_composite_clip.duration:.2f}s)")
final_composite_clip.write_videofile(
output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k"
)
logger.info(f"Animatic created: {output_path}"); return output_path
else: logger.error("Final animatic clip invalid or has no duration. Not writing file."); return None
except Exception as e: logger.error(f"Animatic writing error: {e}", exc_info=True); return None
finally:
for clip in processed_moviepy_clips:
if hasattr(clip, 'close'): clip.close()
if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
if final_composite_clip and hasattr(final_composite_clip, 'close'): final_composite_clip.close() |