File size: 19,187 Bytes
287c9ca
200c5c4
8583908
9840152
9d84ba9
990e23e
287c9ca
8583908
 
 
9840152
5e4272a
200c5c4
 
 
 
 
f13d4b2
 
 
f02ab98
 
 
f13d4b2
 
 
 
 
 
 
 
200c5c4
f13d4b2
200c5c4
f02ab98
200c5c4
f13d4b2
 
287c9ca
9d84ba9
f13d4b2
 
 
 
 
 
 
 
200c5c4
f13d4b2
 
 
200c5c4
f13d4b2
200c5c4
f13d4b2
 
 
f02ab98
200c5c4
 
f13d4b2
f02ab98
f13d4b2
200c5c4
 
f13d4b2
200c5c4
f02ab98
f13d4b2
200c5c4
f02ab98
200c5c4
09d5c67
5e4272a
f02ab98
200c5c4
f13d4b2
 
 
 
 
 
200c5c4
 
f13d4b2
200c5c4
f13d4b2
 
 
200c5c4
 
f13d4b2
29c2122
 
200c5c4
f13d4b2
200c5c4
f13d4b2
50c620f
200c5c4
 
 
 
5e4272a
200c5c4
 
f13d4b2
 
 
 
200c5c4
f13d4b2
29c2122
200c5c4
f13d4b2
 
200c5c4
f02ab98
f13d4b2
 
 
 
200c5c4
 
f13d4b2
200c5c4
f13d4b2
200c5c4
9840152
200c5c4
f02ab98
9840152
 
200c5c4
f13d4b2
29c2122
f13d4b2
f02ab98
f13d4b2
9840152
 
200c5c4
 
 
9840152
b97795f
200c5c4
41b47a8
09d5c67
9d84ba9
 
 
200c5c4
f02ab98
200c5c4
 
 
 
 
f13d4b2
200c5c4
5e4272a
200c5c4
 
f13d4b2
200c5c4
 
 
 
 
29c2122
f13d4b2
200c5c4
 
f13d4b2
200c5c4
29c2122
5e4272a
f13d4b2
200c5c4
f13d4b2
 
9840152
 
200c5c4
f13d4b2
200c5c4
f02ab98
f13d4b2
 
200c5c4
f13d4b2
 
 
200c5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f13d4b2
 
 
 
 
200c5c4
f13d4b2
 
200c5c4
f13d4b2
200c5c4
9840152
 
5e4272a
200c5c4
f13d4b2
8583908
200c5c4
8583908
9d84ba9
200c5c4
8583908
200c5c4
29c2122
200c5c4
 
29c2122
200c5c4
 
 
 
29c2122
 
200c5c4
 
 
8583908
200c5c4
 
29c2122
 
200c5c4
9d84ba9
29c2122
9d84ba9
200c5c4
 
 
 
9840152
9d84ba9
200c5c4
9d84ba9
200c5c4
9840152
200c5c4
b97795f
200c5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f13d4b2
200c5c4
 
 
 
 
 
f13d4b2
 
5e4272a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps 
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip, 
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx 
import numpy as np
import os
import openai
import requests
import io
import time
import random 
import subprocess 
import logging

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# --- ElevenLabs Import ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None 
Voice = None              
VoiceSettings = None      

try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient 
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient 
    Voice = ImportedVoice
    VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True
    logger.info("Successfully imported ElevenLabs client components (SDK v1.x.x pattern).")
except ImportError as e_eleven:
    logger.warning(f"Could not import ElevenLabs client components: {e_eleven}. ElevenLabs audio will be disabled.")
except Exception as e_gen_eleven: 
    logger.warning(f"General error importing ElevenLabs: {e_gen_eleven}. ElevenLabs audio will be disabled.")


class VisualEngine:
    def __init__(self, output_dir="temp_cinegen_media"):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)
        
        self.font_filename = "arial.ttf" 
        self.font_path_in_container = f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
        self.font_size_pil = 20 
        self.video_overlay_font_size = 30 
        self.video_overlay_font_color = 'white'
        self.video_overlay_font = 'Liberation-Sans-Bold' # More likely to be found by ImageMagick on Linux

        try:
            self.font = ImageFont.truetype(self.font_path_in_container, self.font_size_pil)
            logger.info(f"Placeholder font loaded: {self.font_path_in_container}.")
        except IOError:
            logger.warning(f"Placeholder font '{self.font_path_in_container}' not found. Using default.")
            self.font = ImageFont.load_default()
            self.font_size_pil = 10

        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
        self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024" 
        self.video_frame_size = (1280, 720) 

        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
        self.elevenlabs_client = None 
        self.elevenlabs_voice_id = "Rachel" 
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: 
            self.elevenlabs_voice_settings = VoiceSettings(
                stability=0.60, similarity_boost=0.80, 
                style=0.15, use_speaker_boost=True
            )
        else: self.elevenlabs_voice_settings = None
        self.pexels_api_key = None; self.USE_PEXELS = False
        logger.info("VisualEngine initialized.")

    def set_openai_api_key(self,k): 
        self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
        logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled (no API key).'}")

    def set_elevenlabs_api_key(self,api_key):
        self.elevenlabs_api_key=api_key
        if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient: 
            try: 
                self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key) 
                if self.elevenlabs_client: self.USE_ELEVENLABS=True; logger.info("ElevenLabs Client Ready.")
                else: self.USE_ELEVENLABS=False; logger.warning("ElevenLabs client is None post-init.")
            except Exception as e: 
                logger.error(f"Error initializing ElevenLabs client: {e}. Disabled.", exc_info=True); 
                self.USE_ELEVENLABS=False; self.elevenlabs_client = None
        else: 
            self.USE_ELEVENLABS=False; self.elevenlabs_client = None
            if not (ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient): pass # Logged at import
            else: logger.info("ElevenLabs API Key not provided. Disabled.")
            
    def set_pexels_api_key(self,k):
        self.pexels_api_key=k; self.USE_PEXELS=bool(k)
        logger.info(f"Pexels Search {'Ready.' if k else 'Disabled (no API key).'}")
    
    def _get_text_dimensions(self,text_content,font_obj): # No changes
        if not text_content: return 0,self.font_size_pil 
        try:
            if hasattr(font_obj,'getbbox'): bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1];return w, h if h > 0 else self.font_size_pil
            elif hasattr(font_obj,'getsize'): w,h=font_obj.getsize(text_content);return w, h if h > 0 else self.font_size_pil
            else: return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
        except: return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)
    
    def _create_placeholder_image_content(self,text_description,filename,size=None): # No changes
        if size is None: size = self.video_frame_size
        img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
        if not text_description: text_description="(Placeholder: No prompt text)"
        words=text_description.split();current_line=""
        for word in words:
            test_line=current_line+word+" "; 
            if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
            else:
                if current_line: lines.append(current_line.strip()); current_line=word+" "
        if current_line: lines.append(current_line.strip())
        if not lines: lines.append("(Text error or too long for placeholder)")
        _,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
        max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2))
        y_text=padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
        for i in range(max_lines_to_display):
            line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
            d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
            if i==6 and max_lines_to_display > 7: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
        filepath=os.path.join(self.output_dir,filename); 
        try:img.save(filepath);return filepath
        except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None

    def _search_pexels_image(self, query, output_filename_base): # No changes
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
        pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg")
        filepath = os.path.join(self.output_dir, pexels_filename)
        try:
            logger.info(f"Searching Pexels for: '{query}'"); effective_query = " ".join(query.split()[:5]); params["query"] = effective_query
            response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
            response.raise_for_status(); data = response.json()
            if data.get("photos") and len(data["photos"]) > 0:
                photo_url = data["photos"][0]["src"]["large2x"] 
                image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
                img_data = Image.open(io.BytesIO(image_response.content))
                if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
                img_data.save(filepath); logger.info(f"Pexels image saved: {filepath}"); return filepath
            else: logger.info(f"No photos found on Pexels for query: '{effective_query}'")
        except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
        return None

    def generate_image_visual(self, image_prompt_text, scene_data, scene_identifier_filename): # No changes
        filepath = os.path.join(self.output_dir, scene_identifier_filename)
        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_retries = 2
            for attempt in range(max_retries):
                try:
                    logger.info(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
                    client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0) 
                    response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
                    image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
                    if revised_prompt: logger.info(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
                    image_response = requests.get(image_url, timeout=120); image_response.raise_for_status()
                    img_data = Image.open(io.BytesIO(image_response.content)); 
                    if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
                    img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}"); return filepath 
                except openai.RateLimitError as e: 
                    logger.warning(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s..."); time.sleep(5 * (attempt + 1))
                    if attempt == max_retries - 1: logger.error("Max retries for RateLimitError."); break
                    else: continue
                except openai.APIError as e: logger.error(f"OpenAI API Error: {e}"); break 
                except requests.exceptions.RequestException as e: logger.error(f"Requests Error (DALL-E download): {e}"); break
                except Exception as e: logger.error(f"Generic error (DALL-E gen): {e}", exc_info=True); break
            logger.warning("DALL-E generation failed. Trying Pexels fallback...")
            pexels_query_text = scene_data.get('pexels_search_query_๊ฐ๋…', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
            pexels_path = self._search_pexels_image(pexels_query_text, scene_identifier_filename)
            if pexels_path: return pexels_path
            logger.warning("Pexels also failed/disabled. Using placeholder.")
            return self._create_placeholder_image_content(f"[AI/Pexels Failed] {image_prompt_text[:100]}...", scene_identifier_filename)
        else: 
            return self._create_placeholder_image_content(image_prompt_text, scene_identifier_filename)

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
            logger.info("ElevenLabs conditions not met. Skipping audio generation.")
            return None
        
        audio_filepath = os.path.join(self.output_dir, output_filename)
        try:
            logger.info(f"Generating ElevenLabs audio (Voice: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
            
            # Determine how to pass voice (as object or ID string)
            voice_param = self.elevenlabs_voice_id 
            if Voice and self.elevenlabs_voice_settings: # Check if Voice & VoiceSettings were imported
                voice_param = Voice(
                    voice_id=self.elevenlabs_voice_id, # This voice_id must be a valid ID string or a known name
                    settings=self.elevenlabs_voice_settings
                )
            
            # Use the text_to_speech.stream() method for newer SDK
            if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
                logger.info("Using elevenlabs_client.text_to_speech.stream()")
                audio_data_iterator = self.elevenlabs_client.text_to_speech.stream(
                    text=text_to_narrate,
                    voice_id=self.elevenlabs_voice_id, # stream usually takes voice_id string
                    model_id="eleven_multilingual_v2" # or other models like "eleven_monolingual_v1"
                )
            # Fallback to direct .generate() if text_to_speech.stream isn't there (might be an older v1 client or different structure)
            elif hasattr(self.elevenlabs_client, 'generate'):
                logger.info("Using elevenlabs_client.generate() as fallback.")
                audio_data_iterator = self.elevenlabs_client.generate(
                    text=text_to_narrate,
                    voice=voice_param, # This might take the Voice object or just the ID string
                    model="eleven_multilingual_v2"
                )
            else:
                logger.error("No recognized audio generation method (text_to_speech.stream or generate) found on ElevenLabs client.")
                return None
            
            with open(audio_filepath, "wb") as f:
                for chunk in audio_data_iterator: 
                    if chunk: f.write(chunk)
            
            logger.info(f"ElevenLabs audio saved: {audio_filepath}")
            return audio_filepath
        except AttributeError as ae:
             logger.error(f"AttributeError with ElevenLabs client: {ae}. Method or attribute likely missing for installed SDK version.", exc_info=True)
        except Exception as e:
            logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
        return None

    def create_video_from_images(self, image_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24, duration_per_image=4.5):
        if not image_data_list: logger.warning("No image data for video."); return None
        processed_clips = []; narration_audio_clip = None; final_video_clip_obj = None

        logger.info(f"Preparing {len(image_data_list)} clips for video. Target frame size: {self.video_frame_size}")
        for i, data in enumerate(image_data_list):
            img_path, scene_num, key_action = data.get('path'), data.get('scene_num', i+1), data.get('key_action', '')
            if not (img_path and os.path.exists(img_path)): logger.warning(f"Img not found or invalid: {img_path}"); continue
            try:
                pil_img = Image.open(img_path)
                if pil_img.mode != 'RGB': pil_img = pil_img.convert('RGB')
                
                # Resize and letterbox/pillarbox
                img_copy = pil_img.copy()
                # Use Image.Resampling.LANCZOS for high quality downscaling
                img_copy.thumbnail(self.video_frame_size, Image.Resampling.LANCZOS) 
                
                canvas = Image.new('RGB', self.video_frame_size, (random.randint(0,5), random.randint(0,5), random.randint(0,5))) 
                xo, yo = (self.video_frame_size[0]-img_copy.width)//2, (self.video_frame_size[1]-img_copy.height)//2
                canvas.paste(img_copy, (xo,yo))
                frame_np = np.array(canvas) # This numpy array is correctly sized.
                
                # ImageClip should not need to do much resizing now.
                img_clip = ImageClip(frame_np).set_duration(duration_per_image)

                end_scale = random.uniform(1.03, 1.08) 
                img_clip = img_clip.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / duration_per_image))
                img_clip = img_clip.set_position('center')
                
                if key_action:
                    txt_clip = TextClip(f"Scene {scene_num}\n{key_action}", fontsize=self.video_overlay_font_size, 
                                        color=self.video_overlay_font_color, font=self.video_overlay_font,
                                        bg_color='rgba(10,10,20,0.8)', method='caption', align='West',
                                        size=(self.video_frame_size[0]*0.9, None), kerning=-1, stroke_color='black', stroke_width=1.5
                                       ).set_duration(duration_per_image - 1.0).set_start(0.5).set_position(('center', 0.92), relative=True)
                    final_scene_clip = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size, use_bgclip=True, bg_color=(0,0,0)) # Ensure bg for composite
                else: final_scene_clip = img_clip
                processed_clips.append(final_scene_clip)
            except Exception as e: logger.error(f"Creating video clip for {img_path}: {e}", exc_info=True)
        
        if not processed_clips: logger.warning("No clips processed for video."); return None
        
        transition = 0.75 
        try:
            final_video_clip_obj = concatenate_videoclips(processed_clips, padding=-transition, method="compose")
            if final_video_clip_obj.duration > transition*2: 
                final_video_clip_obj = final_video_clip_obj.fx(vfx.fadein, transition).fx(vfx.fadeout, transition)
            
            if overall_narration_path and os.path.exists(overall_narration_path):
                try:
                    narration_audio_clip = AudioFileClip(overall_narration_path)
                    if narration_audio_clip.duration < final_video_clip_obj.duration:
                        final_video_clip_obj = final_video_clip_obj.subclip(0, narration_audio_clip.duration)
                    final_video_clip_obj = final_video_clip_obj.set_audio(narration_audio_clip)
                    logger.info("Overall narration added to video.")
                except Exception as e: logger.error(f"Adding overall narration: {e}", exc_info=True)
            
            output_path = os.path.join(self.output_dir, output_filename)
            logger.info(f"Writing final video to: {output_path}")
            final_video_clip_obj.write_videofile(output_path, fps=fps, codec='libx264', preset='medium', 
                                            audio_codec='aac',
                                            temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'), 
                                            remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k")
            logger.info(f"Video successfully created: {output_path}"); return output_path
        except Exception as e: logger.error(f"Writing video file: {e}", exc_info=True); return None
        finally: # Ensure clips are closed
            for c_item in processed_clips: 
                if hasattr(c_item, 'close'): c_item.close()
            if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
            if final_video_clip_obj and hasattr(final_video_clip_obj, 'close'): final_video_clip_obj.close()