File size: 38,328 Bytes
e22eb13 e0b9b11 4da81e5 e22eb13 990e23e 92cb699 5089920 92cb699 200c5c4 e22eb13 3084a6c e22eb13 f13d4b2 e22eb13 a219e07 3084a6c e22eb13 3084a6c e22eb13 3084a6c e22eb13 a219e07 f13d4b2 5089920 f13d4b2 a219e07 e22eb13 3084a6c e22eb13 3084a6c 5089920 a219e07 3084a6c 5089920 3084a6c cb93f9c 3084a6c e22eb13 3084a6c 4c2220b f13d4b2 287c9ca 3084a6c e22eb13 3084a6c e22eb13 3084a6c e0b9b11 3084a6c e22eb13 3084a6c d44d308 3084a6c 200c5c4 09d5c67 3084a6c a219e07 3084a6c d44d308 3084a6c e22eb13 3084a6c e22eb13 cb93f9c 3084a6c cb93f9c e22eb13 3084a6c cb93f9c 3084a6c cb93f9c 3084a6c d44d308 e22eb13 3084a6c d44d308 3084a6c d44d308 e22eb13 3084a6c e22eb13 3084a6c 4da81e5 3084a6c e22eb13 d44d308 3084a6c e22eb13 3084a6c e22eb13 3084a6c e22eb13 3084a6c e22eb13 3084a6c e22eb13 3084a6c a219e07 3084a6c cb93f9c 4da81e5 3084a6c 4da81e5 e22eb13 4da81e5 e22eb13 4da81e5 3084a6c 4da81e5 e22eb13 3084a6c e22eb13 3084a6c cb93f9c 3084a6c cb93f9c 3084a6c cb93f9c 3084a6c e22eb13 3084a6c 5089920 3084a6c e22eb13 3084a6c 5089920 3084a6c cb93f9c 3084a6c 4da81e5 3084a6c d73d823 4da81e5 3084a6c d73d823 3084a6c 4da81e5 cb93f9c e0b9b11 3084a6c cb93f9c 3084a6c 8583908 3084a6c 3313da9 3084a6c cb93f9c 3084a6c 59af6e7 3084a6c 59af6e7 3084a6c cb93f9c 3084a6c a219e07 3084a6c b97795f 3084a6c 754c854 3313da9 3084a6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import mimetypes
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
# --- MoviePy Imports ---
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
# --- MONKEY PATCH for Pillow/MoviePy compatibility ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'): # Pillow 8
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different.")
except Exception as e_monkey_patch:
print(f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}")
logger = logging.getLogger(__name__)
# logger.setLevel(logging.DEBUG) # Uncomment for very verbose debugging
# --- External Service Client Imports ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient
Voice = ImportedVoice
VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True
logger.info("ElevenLabs client components imported successfully.")
except ImportError:
logger.warning("ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled.")
except Exception as e_eleven_import:
logger.warning(f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled.")
RUNWAYML_SDK_IMPORTED = False
RunwayMLAPIClient = None
try:
from runwayml import RunwayML as ImportedRunwayMLClient
RunwayMLAPIClient = ImportedRunwayMLClient
RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK imported successfully.")
except ImportError:
logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk_import:
logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled.")
class VisualEngine:
DEFAULT_FONT_SIZE_PIL = 10
PREFERRED_FONT_SIZE_PIL = 20
VIDEO_OVERLAY_FONT_SIZE = 30
VIDEO_OVERLAY_FONT_COLOR = 'white'
DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'
PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold'
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename_pil = "DejaVuSans-Bold.ttf"
font_paths_to_try = [ self.font_filename_pil, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
self.font_path_pil_resolved = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_pil = ImageFont.load_default(); self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
if self.font_path_pil_resolved:
try: self.font_pil = ImageFont.truetype(self.font_path_pil_resolved, self.PREFERRED_FONT_SIZE_PIL); self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL; logger.info(f"Pillow font: {self.font_path_pil_resolved} sz {self.current_font_size_pil}."); self.video_overlay_font = 'DejaVu-Sans-Bold' if "dejavu" in self.font_path_pil_resolved.lower() else ('Liberation-Sans-Bold' if "liberation" in self.font_path_pil_resolved.lower() else self.DEFAULT_MOVIEPY_FONT)
except IOError as e_font_load: logger.error(f"Pillow font IOError '{self.font_path_pil_resolved}': {e_font_load}. Default.")
else: logger.warning("Custom Pillow font not found. Default.")
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None; self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_client_instance = None
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient and os.getenv("RUNWAYML_API_SECRET"):
try: self.runway_ml_client_instance = RunwayMLAPIClient(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init from env var at startup.")
except Exception as e_runway_init_startup: logger.error(f"Initial RunwayML client init failed: {e_runway_init_startup}"); self.USE_RUNWAYML = False
logger.info("VisualEngine initialized.")
def set_openai_api_key(self, api_key): self.openai_api_key = api_key; self.USE_AI_IMAGE_GENERATION = bool(api_key); logger.info(f"DALL-E status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
self.elevenlabs_api_key = api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS = bool(self.elevenlabs_client); logger.info(f"11L Client: {'Ready' if self.USE_ELEVENLABS else 'Failed'} (Voice: {self.elevenlabs_voice_id})")
except Exception as e: logger.error(f"11L client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False; self.elevenlabs_client=None
else: self.USE_ELEVENLABS = False; logger.info(f"11L Disabled (key/SDK).")
def set_pexels_api_key(self, api_key): self.pexels_api_key = api_key; self.USE_PEXELS = bool(api_key); logger.info(f"Pexels status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
def set_runway_api_key(self, api_key):
self.runway_api_key = api_key
if api_key:
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
if not self.runway_ml_client_instance:
try:
original_env_secret = os.getenv("RUNWAYML_API_SECRET")
if not original_env_secret: os.environ["RUNWAYML_API_SECRET"] = api_key; logger.info("Temp set RUNWAYML_API_SECRET for SDK.")
self.runway_ml_client_instance = RunwayMLAPIClient(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init via set_runway_api_key.")
if not original_env_secret: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temp RUNWAYML_API_SECRET.")
except Exception as e: logger.error(f"RunwayML Client init in set_runway_api_key fail: {e}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_client_instance=None
else: self.USE_RUNWAYML = True; logger.info("RunwayML Client already init.")
else: logger.warning("RunwayML SDK not imported. Service disabled."); self.USE_RUNWAYML = False
else: self.USE_RUNWAYML = False; self.runway_ml_client_instance = None; logger.info("RunwayML Disabled (no API key).")
def _image_to_data_uri(self, image_path):
# (Implementation from before)
try: mime_type,_=mimetypes.guess_type(image_path)
if not mime_type:ext=os.path.splitext(image_path)[1].lower();mime_map={".png":"image/png",".jpg":"image/jpeg",".jpeg":"image/jpeg"};mime_type=mime_map.get(ext,"application/octet-stream");
if mime_type=="application/octet-stream":logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
with open(image_path,"rb")as image_file:encoded_string=base64.b64encode(image_file.read()).decode('utf-8')
data_uri=f"data:{mime_type};base64,{encoded_string}";logger.debug(f"Data URI for {os.path.basename(image_path)} (start): {data_uri[:100]}...");return data_uri
except FileNotFoundError:logger.error(f"Img not found {image_path} for data URI.");return None
except Exception as e:logger.error(f"Error converting {image_path} to data URI:{e}",exc_info=True);return None
def _map_resolution_to_runway_ratio(self, width, height):
# (Implementation from before)
ratio_str=f"{width}:{height}";supported_ratios_gen4=["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"];
if ratio_str in supported_ratios_gen4:return ratio_str
logger.warning(f"Res {ratio_str} not in Gen-4 list. Default 1280:720.");return "1280:720"
def _get_text_dimensions(self, text_content, font_object):
# (Implementation from before)
dch=getattr(font_object,'size',self.current_font_size_pil);
if not text_content:return 0,dch
try:
if hasattr(font_object,'getbbox'):bb=font_object.getbbox(text_content);w=bb[2]-bb[0];h=bb[3]-bb[1];return w,h if h>0 else dch
elif hasattr(font_object,'getsize'):w,h=font_object.getsize(text_content);return w,h if h>0 else dch
else:return int(len(text_content)*dch*0.6),int(dch*1.2)
except Exception as e:logger.warning(f"Error in _get_text_dimensions:{e}");return int(len(text_content)*self.current_font_size_pil*0.6),int(self.current_font_size_pil*1.2)
def _create_placeholder_image_content(self,text_description,filename,size=None):
# <<< CORRECTED VERSION OF THIS METHOD >>>
if size is None: size = self.video_frame_size
img = Image.new('RGB', size, color=(20, 20, 40)); d = ImageDraw.Draw(img); padding = 25
max_w = size[0] - (2 * padding); lines = []
if not text_description: text_description = "(Placeholder Image)"
words = text_description.split(); current_line_text = ""
for word_idx, word in enumerate(words):
prospective_addition = word + (" " if word_idx < len(words) - 1 else "")
test_line_text = current_line_text + prospective_addition
current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil)
if current_w == 0 and test_line_text.strip(): current_w = len(test_line_text) * (self.current_font_size_pil * 0.6)
if current_w <= max_w: current_line_text = test_line_text
else:
if current_line_text.strip(): lines.append(current_line_text.strip())
current_line_text = prospective_addition
if current_line_text.strip(): lines.append(current_line_text.strip())
if not lines and text_description:
avg_char_w, _ = self._get_text_dimensions("W", self.font_pil); avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6)
chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20
lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
elif not lines: lines.append("(Placeholder Error)")
_, single_line_h = self._get_text_dimensions("Ay", self.font_pil); single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2
max_lines = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1
max_lines = max(1, max_lines)
y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0
for i in range(max_lines):
line_text = lines[i]; line_w, _ = self._get_text_dimensions(line_text, self.font_pil)
if line_w == 0 and line_text.strip(): line_w = len(line_text) * (self.current_font_size_pil * 0.6)
x_pos = (size[0] - line_w) / 2.0
try: d.text((x_pos, y_pos), line_text, font=self.font_pil, fill=(200, 200, 180))
except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'")
y_pos += single_line_h + 2
if i == 6 and max_lines > 7:
try: d.text((x_pos, y_pos), "...", font=self.font_pil, fill=(200, 200, 180))
except Exception as e_elip: logger.error(f"Pillow d.text ellipsis error: {e_elip}"); break
filepath = os.path.join(self.output_dir, filename)
try: img.save(filepath); return filepath
except Exception as e_save: logger.error(f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True); return None
def _search_pexels_image(self, query, output_filename_base):
# <<< CORRECTED VERSION OF THIS METHOD >>>
if not self.USE_PEXELS or not self.pexels_api_key: return None
headers = {"Authorization": self.pexels_api_key}
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
base_name_for_pexels, _ = os.path.splitext(output_filename_base)
pexels_filename = base_name_for_pexels + f"_pexels_{random.randint(1000,9999)}.jpg"
filepath = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Pexels: Searching for '{query}'")
effective_query = " ".join(query.split()[:5])
params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status()
data = response.json()
if data.get("photos") and len(data["photos"]) > 0:
photo_details = data["photos"][0]
photo_url = photo_details.get("src", {}).get("large2x")
if not photo_url: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}"); return None
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
img_data_pil = Image.open(io.BytesIO(image_response.content))
if img_data_pil.mode != 'RGB': img_data_pil = img_data_pil.convert('RGB')
img_data_pil.save(filepath); logger.info(f"Pexels: Image saved to {filepath}"); return filepath
else: logger.info(f"Pexels: No photos for '{effective_query}'."); return None
except requests.exceptions.RequestException as e_req: logger.error(f"Pexels: RequestException for '{query}': {e_req}", exc_info=False); return None
except Exception as e: logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True); return None
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
# (Implementation from previous response, with Runway SDK calls)
if not self.USE_RUNWAYML or not self.runway_ml_client_instance: logger.warning("RunwayML not enabled/client not init. Skip video."); return None
if not input_image_path or not os.path.exists(input_image_path): logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}"); return None
image_data_uri = self._image_to_data_uri(input_image_path)
if not image_data_uri: return None
runway_duration = 10 if target_duration_seconds >= 8 else 5
runway_ratio_str = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
base_name_runway, _ = os.path.splitext(scene_identifier_filename_base); output_video_filename = base_name_runway + f"_runway_gen4_d{runway_duration}s.mp4" # Corrected base name usage
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', img='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
try:
task_submission = self.runway_ml_client_instance.image_to_video.create(model='gen4_turbo', prompt_image=image_data_uri, prompt_text=text_prompt_for_motion, duration=runway_duration, ratio=runway_ratio_str)
task_id = task_submission.id; logger.info(f"Runway Gen-4 task ID: {task_id}. Polling...")
poll_interval=10; max_polls=36; start_poll_time = time.time()
while time.time() - start_poll_time < max_polls * poll_interval:
time.sleep(poll_interval); task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id)
logger.info(f"Runway task {task_id} status: {task_details.status}")
if task_details.status == 'SUCCEEDED':
output_url = getattr(getattr(task_details,'output',None),'url',None) or (getattr(task_details,'artifacts',None) and task_details.artifacts[0].url if task_details.artifacts and hasattr(task_details.artifacts[0],'url') else None) or (getattr(task_details,'artifacts',None) and task_details.artifacts[0].download_url if task_details.artifacts and hasattr(task_details.artifacts[0],'download_url') else None)
if not output_url: logger.error(f"Runway task {task_id} SUCCEEDED, but no output URL. Details: {vars(task_details) if hasattr(task_details,'__dict__') else task_details}"); return None
logger.info(f"Runway task {task_id} SUCCEEDED. Downloading: {output_url}")
video_response = requests.get(output_url, stream=True, timeout=300); video_response.raise_for_status()
with open(output_video_filepath,'wb') as f:
for chunk in video_response.iter_content(chunk_size=8192): f.write(chunk)
logger.info(f"Runway Gen-4 video saved: {output_video_filepath}"); return output_video_filepath
elif task_details.status in ['FAILED','ABORTED','ERROR']:
em = getattr(task_details,'error_message',None) or getattr(getattr(task_details,'output',None),'error',"Unknown Runway error.")
logger.error(f"Runway task {task_id} status: {task_details.status}. Error: {em}"); return None
logger.warning(f"Runway task {task_id} timed out."); return None
except AttributeError as ae: logger.error(f"RunwayML SDK AttrError: {ae}. SDK/methods changed?", exc_info=True); return None
except Exception as e: logger.error(f"Runway Gen-4 API error: {e}", exc_info=True); return None
def _create_placeholder_video_content(self, td, fn, dur=4, sz=None):
# (Keep as before)
if sz is None: sz = self.video_frame_size; fp = os.path.join(self.output_dir, fn); tc = None
try: tc = TextClip(td, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=sz, method='caption').set_duration(dur); tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp
except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
finally:
if tc and hasattr(tc, 'close'): tc.close()
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=5):
# <<< THIS IS THE CORRECTED METHOD with fixed DALL-E loop >>>
base_name, _ = os.path.splitext(scene_identifier_filename_base)
asset_info = {'path': None, 'type': 'none', 'error': True,
'prompt_used': image_generation_prompt_text,
'error_message': 'Asset generation init failed'}
input_image_for_runway_path = None
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
base_image_filepath = os.path.join(self.output_dir, base_image_filename)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_retries = 2; attempt_count_dalle = 0
for attempt_num_dalle in range(max_retries):
attempt_count_dalle = attempt_num_dalle + 1
try: # DALL-E attempt try block
logger.info(f"Attempt {attempt_count_dalle} DALL-E (base img): {image_generation_prompt_text[:70]}...")
client_oai = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
response_oai = client_oai.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid")
img_url_oai = response_oai.data[0].url
revised_prompt_oai = getattr(response_oai.data[0],'revised_prompt',None)
if revised_prompt_oai: logger.info(f"DALL-E revised: {revised_prompt_oai[:70]}...")
img_response_get = requests.get(img_url_oai,timeout=120); img_response_get.raise_for_status()
pil_img_oai = Image.open(io.BytesIO(img_response_get.content))
if pil_img_oai.mode!='RGB': pil_img_oai=pil_img_oai.convert('RGB')
pil_img_oai.save(base_image_filepath); logger.info(f"DALL-E base img saved: {base_image_filepath}")
input_image_for_runway_path=base_image_filepath
asset_info={'path':base_image_filepath,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':revised_prompt_oai}
break # Success, exit loop
except openai.RateLimitError as e_rl: logger.warning(f"OpenAI RateLimit Att {attempt_count_dalle}:{e_rl}.Retry...");time.sleep(5*attempt_count_dalle);asset_info['error_message']=str(e_rl)
except openai.APIError as e_api_oai: logger.error(f"OpenAI APIError Att {attempt_count_dalle}:{e_api_oai}");asset_info['error_message']=str(e_api_oai);break
except requests.exceptions.RequestException as e_req_oai: logger.error(f"Requests Err DALL-E Att {attempt_count_dalle}:{e_req_oai}");asset_info['error_message']=str(e_req_oai);break
except Exception as e_gen_oai: logger.error(f"General DALL-E Err Att {attempt_count_dalle}:{e_gen_oai}",exc_info=True);asset_info['error_message']=str(e_gen_oai);break
if asset_info['error']: logger.warning(f"DALL-E failed after {attempt_count_dalle} attempts for base img.")
if asset_info['error'] and self.USE_PEXELS:
logger.info("Trying Pexels for base img.");pqt=scene_data.get('pexels_search_query_๊ฐ๋
',f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}");pp=self._search_pexels_image(pqt,base_image_filename);
if pp:input_image_for_runway_path=pp;asset_info={'path':pp,'type':'image','error':False,'prompt_used':f"Pexels:{pqt}"}
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Pexels failed for base.").strip()
if asset_info['error']:
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ppt=asset_info.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...",base_image_filename);
if php:input_image_for_runway_path=php;asset_info={'path':php,'type':'image','error':False,'prompt_used':ppt}
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Base placeholder failed.").strip()
if generate_as_video_clip:
if not input_image_for_runway_path:logger.error("RunwayML video: base img failed.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info['type']='none';return asset_info
if self.USE_RUNWAYML:
video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,input_image_for_runway_path,base_name,runway_target_duration)
if video_path and os.path.exists(video_path):asset_info={'path':video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':input_image_for_runway_path}
else:logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
return asset_info
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
# (Keep as before)
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
else:logger.error("No 11L audio method.");return None
if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
else:vps["voice_settings"]=self.elevenlabs_voice_settings
adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
with open(afp,"wb")as f:
for c_chunk in adi: # Renamed c to c_chunk
if c_chunk:f.write(c_chunk)
logger.info(f"11L audio (stream): {afp}");return afp
except Exception as e_11l:logger.error(f"11L audio error: {e_11l}",exc_info=True);return None # Renamed e to e_11l
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
# (Keep as in the version with robust image processing, C-contiguous array, debug saves, and pix_fmt)
if not asset_data_list: logger.warning("No assets for animatic."); return None
processed_clips = []; narration_clip_mvpy = None; final_composite_video_clip = None # Renamed variables
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
for i, asset_info_dict in enumerate(asset_data_list): # Renamed asset_info to asset_info_dict
asset_p, asset_t, scene_d = asset_info_dict.get('path'), asset_info_dict.get('type'), asset_info_dict.get('duration', 4.5)
scene_n, key_act = asset_info_dict.get('scene_num', i + 1), asset_info_dict.get('key_action', '')
logger.info(f"S{scene_n}: Path='{asset_p}', Type='{asset_t}', Dur='{scene_d}'s")
if not (asset_p and os.path.exists(asset_p)): logger.warning(f"S{scene_n}: Not found '{asset_p}'. Skip."); continue
if scene_d <= 0: logger.warning(f"S{scene_n}: Invalid duration ({scene_d}s). Skip."); continue
current_scene_clip_mvpy = None # Renamed current_scene_mvpy_clip
try:
if asset_t == 'image':
# ... (Robust image processing logic from previous full version) ...
pil_img_opened = Image.open(asset_p); logger.debug(f"S{scene_n}: Loaded img. Mode:{pil_img_opened.mode}, Size:{pil_img_opened.size}")
img_rgba_converted = pil_img_opened.convert('RGBA') if pil_img_opened.mode != 'RGBA' else pil_img_opened.copy()
thumb_img = img_rgba_converted.copy(); res_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb_img.thumbnail(self.video_frame_size,res_filter)
canvas_for_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); x_offset,y_offset=(self.video_frame_size[0]-thumb_img.width)//2,(self.video_frame_size[1]-thumb_img.height)//2
canvas_for_rgba.paste(thumb_img,(x_offset,y_offset),thumb_img)
final_rgb_for_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_for_pil.paste(canvas_for_rgba,mask=canvas_for_rgba.split()[3])
debug_path_pre_numpy = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_n}.png"); final_rgb_for_pil.save(debug_path_pre_numpy); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_n} to {debug_path_pre_numpy}")
numpy_frame = np.array(final_rgb_for_pil,dtype=np.uint8);
if not numpy_frame.flags['C_CONTIGUOUS']: numpy_frame=np.ascontiguousarray(numpy_frame,dtype=np.uint8)
logger.debug(f"S{scene_n}: NumPy for MoviePy. Shape:{numpy_frame.shape}, DType:{numpy_frame.dtype}, C-Contig:{numpy_frame.flags['C_CONTIGUOUS']}")
if numpy_frame.size==0 or numpy_frame.ndim!=3 or numpy_frame.shape[2]!=3: logger.error(f"S{scene_n}: Invalid NumPy. Skip."); continue
image_clip_base = ImageClip(numpy_frame,transparent=False).set_duration(scene_d)
moviepy_debug_frame_save_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_n}.png"); image_clip_base.save_frame(moviepy_debug_frame_save_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_n} to {moviepy_debug_frame_save_path}")
image_clip_with_fx = image_clip_base
try: end_scale_kb=random.uniform(1.03,1.08); image_clip_with_fx=image_clip_base.fx(vfx.resize,lambda time_t:1+(end_scale_kb-1)*(time_t/scene_d) if scene_d>0 else 1).set_position('center')
except Exception as e_kb: logger.error(f"S{scene_n} Ken Burns error: {e_kb}",exc_info=False)
current_scene_mvpy_clip = image_clip_with_fx
elif asset_t == 'video':
# ... (Video processing logic from previous full version) ...
source_video_file_clip=None
try:
source_video_file_clip=VideoFileClip(asset_p,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
temp_video_clip_obj=source_video_file_clip
if source_video_file_clip.duration!=scene_d:
if source_video_file_clip.duration>scene_d:temp_video_clip_obj=source_video_file_clip.subclip(0,scene_d)
else:
if scene_d/source_video_file_clip.duration > 1.5 and source_video_file_clip.duration>0.1:temp_video_clip_obj=source_video_file_clip.loop(duration=scene_d)
else:temp_video_clip_obj=source_video_file_clip.set_duration(source_video_file_clip.duration);logger.info(f"S{scene_n} Video clip ({source_video_file_clip.duration:.2f}s) shorter than target ({scene_d:.2f}s).")
current_scene_mvpy_clip=temp_video_clip_obj.set_duration(scene_d)
if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
except Exception as e_vidload:logger.error(f"S{scene_n} Video load error '{asset_p}':{e_vidload}",exc_info=True);continue
finally:
if source_video_file_clip and source_video_file_clip is not current_scene_mvpy_clip and hasattr(source_video_file_clip,'close'):source_video_file_clip.close()
else: logger.warning(f"S{scene_n} Unknown asset type '{asset_t}'. Skip."); continue
if current_scene_mvpy_clip and key_act: # Text Overlay
try:
text_overlay_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
text_overlay_s_time=0.25
if text_overlay_dur > 0:
text_clip_obj=TextClip(f"Scene {scene_n}\n{key_act}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(text_overlay_dur).set_start(text_overlay_s_time).set_position(('center',0.92),relative=True)
current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,text_clip_obj],size=self.video_frame_size,use_bgclip=True)
else: logger.warning(f"S{scene_n}: Text overlay duration zero. Skip text.")
except Exception as e_txtclip:logger.error(f"S{scene_n} TextClip error:{e_txtclip}. No text.",exc_info=True)
if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_n} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
except Exception as e_asset_loop:logger.error(f"MAJOR Error S{scene_n} ({asset_p}):{e_asset_loop}",exc_info=True)
finally:
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
try: current_scene_mvpy_clip.close()
except: pass
if not processed_clips:logger.warning("No clips processed. Abort.");return None
transition_val=0.75
try:
logger.info(f"Concatenating {len(processed_clips)} clips.");
if len(processed_clips)>1:final_composite_video_clip=concatenate_videoclips(processed_clips,padding=-transition_val if transition_val>0 else 0,method="compose")
elif processed_clips:final_composite_video_clip=processed_clips[0]
if not final_composite_video_clip:logger.error("Concatenation failed.");return None
logger.info(f"Concatenated dur:{final_composite_video_clip.duration:.2f}s")
if transition_val>0 and final_composite_video_clip.duration>0:
if final_composite_video_clip.duration>transition_val*2:final_composite_video_clip=final_composite_video_clip.fx(vfx.fadein,transition_val).fx(vfx.fadeout,transition_val)
else:final_composite_video_clip=final_composite_video_clip.fx(vfx.fadein,min(transition_val,final_composite_video_clip.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_composite_video_clip.duration>0:
try:narration_clip_mvpy=AudioFileClip(overall_narration_path);final_composite_video_clip=final_composite_video_clip.set_audio(narration_clip_mvpy);logger.info("Narration added.")
except Exception as e_narr:logger.error(f"Narration add error:{e_narr}",exc_info=True)
elif final_composite_video_clip.duration<=0:logger.warning("Video no duration. No audio.")
if final_composite_video_clip and final_composite_video_clip.duration>0:
output_vid_path=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{output_vid_path} (Dur:{final_composite_video_clip.duration:.2f}s)")
final_composite_video_clip.write_videofile(output_vid_path,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
logger.info(f"Video created:{output_vid_path}");return output_vid_path
else:logger.error("Final clip invalid. No write.");return None
except Exception as e_vid_write:logger.error(f"Video write error:{e_vid_write}",exc_info=True);return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
all_clips_to_close_list = processed_clips + ([narration_clip_mvpy] if narration_clip_mvpy else []) + ([final_composite_video_clip] if final_composite_video_clip else [])
for clip_to_close_item in all_clips_to_close_list:
if clip_to_close_item and hasattr(clip_to_close_item, 'close'):
try: clip_to_close_item.close()
except Exception as e_final_close: logger.warning(f"Ignoring error while closing a clip: {type(clip_to_close_item).__name__} - {e_final_close}") |