File size: 37,727 Bytes
287c9ca e0b9b11 92cb699 5089920 92cb699 5089920 9840152 5089920 990e23e 92cb699 5089920 92cb699 200c5c4 63525c7 f13d4b2 5089920 f13d4b2 5089920 f13d4b2 5089920 f13d4b2 5089920 e0b9b11 63525c7 5089920 63525c7 5089920 4c2220b f13d4b2 287c9ca 92cb699 e0b9b11 5089920 3313da9 5089920 3313da9 63525c7 3313da9 5089920 e0b9b11 3313da9 e0b9b11 63525c7 3313da9 63525c7 3313da9 63525c7 e0b9b11 f02ab98 5089920 3313da9 e0b9b11 5089920 92cb699 5089920 e0b9b11 f02ab98 5089920 63525c7 5089920 200c5c4 09d5c67 5089920 e0b9b11 3313da9 e0b9b11 92cb699 f13d4b2 5089920 3313da9 5089920 e0b9b11 3313da9 5089920 63525c7 5089920 3313da9 63525c7 3313da9 63525c7 5089920 e0b9b11 3313da9 50c620f 63525c7 e0b9b11 3313da9 63525c7 e0b9b11 3313da9 63525c7 5089920 e0b9b11 92cb699 5089920 92cb699 29c2122 5089920 e0b9b11 63525c7 3313da9 e0b9b11 200c5c4 e0b9b11 63525c7 5089920 92cb699 5089920 92cb699 f13d4b2 e0b9b11 9840152 3313da9 5089920 92cb699 9840152 92cb699 f13d4b2 63525c7 92cb699 e0b9b11 92cb699 9840152 b97795f 5089920 3313da9 5089920 63525c7 3313da9 5089920 63525c7 5089920 3313da9 5089920 3313da9 5089920 63525c7 5089920 3313da9 5089920 63525c7 5089920 63525c7 5089920 63525c7 3313da9 5089920 3313da9 5089920 3313da9 5089920 09d5c67 3313da9 9d84ba9 3313da9 5089920 92cb699 5089920 92cb699 5089920 63525c7 3313da9 63525c7 3313da9 5089920 3313da9 92cb699 63525c7 5089920 63525c7 3313da9 63525c7 3313da9 63525c7 3313da9 29c2122 e0b9b11 f13d4b2 3313da9 f13d4b2 9840152 754c854 5089920 200c5c4 63525c7 5089920 63525c7 5089920 3313da9 5089920 3313da9 63525c7 5089920 63525c7 9840152 5089920 3313da9 5089920 3313da9 5089920 92cb699 3313da9 63525c7 5089920 3313da9 5089920 3313da9 5089920 3313da9 8583908 5089920 3313da9 63525c7 3313da9 63525c7 3313da9 5089920 3313da9 63525c7 3313da9 63525c7 3313da9 63525c7 3313da9 63525c7 5089920 3313da9 63525c7 3313da9 5089920 63525c7 3313da9 5089920 63525c7 3313da9 63525c7 5089920 3313da9 92cb699 3313da9 63525c7 5089920 b97795f 3313da9 5089920 3313da9 5089920 3313da9 200c5c4 3313da9 92cb699 3313da9 5089920 3313da9 754c854 3313da9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'): # Pillow 8
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
# --- END MONKEY PATCH ---
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) # Set default logging level for this module
# --- ElevenLabs Client Import ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient
Voice = ImportedVoice
VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True
logger.info("ElevenLabs client components imported successfully.")
except Exception as e_eleven:
logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio generation will be disabled.")
# --- RunwayML Client Import (Placeholder) ---
RUNWAYML_SDK_IMPORTED = False
RunwayMLClient = None # Placeholder for the actual RunwayML client class
try:
# Example: from runwayml import RunwayClient as ImportedRunwayMLClient
# RunwayMLClient = ImportedRunwayMLClient
# RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK import is a placeholder. Actual SDK needed for Runway features.")
except ImportError:
logger.warning("RunwayML SDK (placeholder) not found. RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML features disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "arial.ttf" # Or a more reliably found font like "DejaVuSans-Bold.ttf"
font_paths_to_try = [
self.font_filename,
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS
f"C:/Windows/Fonts/arial.ttf", # Windows
f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20
self.video_overlay_font_size = 30
self.video_overlay_font_color = 'white'
# For MoviePy TextClip, use font names ImageMagick knows. Check with `convert -list font`.
# 'Liberation-Sans-Bold' is a good default if available.
self.video_overlay_font = 'DejaVuSans-Bold' if 'dejavu' in (self.font_path_pil or '').lower() else 'Liberation-Sans-Bold'
try:
if self.font_path_pil:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
logger.info(f"Pillow font loaded: {self.font_path_pil}.")
else:
self.font = ImageFont.load_default()
logger.warning("Custom Pillow font not found. Using default. Text rendering for placeholders might be basic.")
self.font_size_pil = 10 # Default Pillow font is small
except IOError as e_font:
logger.error(f"Pillow font loading IOError for '{self.font_path_pil or 'default'}': {e_font}. Using default.")
self.font = ImageFont.load_default()
self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False
self.runway_client = None
logger.info("VisualEngine initialized.")
def set_openai_api_key(self,k):
self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
self.elevenlabs_api_key=api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
self.USE_ELEVENLABS=bool(self.elevenlabs_client)
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
def set_pexels_api_key(self,k):
self.pexels_api_key=k; self.USE_PEXELS=bool(k)
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
def set_runway_api_key(self, k):
self.runway_api_key = k
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
try:
# self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
self.USE_RUNWAYML = True
logger.info(f"RunwayML Client (Placeholder with SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
except Exception as e: logger.error(f"RunwayML client (Placeholder with SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
elif k:
self.USE_RUNWAYML = True
logger.info("RunwayML API Key set. Using direct API calls or placeholder (SDK not fully integrated/imported).")
else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")
def _get_text_dimensions(self,text_content,font_obj):
if not text_content: return 0, (self.font.size if hasattr(self.font, 'size') else self.font_size_pil)
try:
if hasattr(font_obj,'getbbox'):
bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
return w, h if h > 0 else font_obj.size
elif hasattr(font_obj,'getsize'):
w,h=font_obj.getsize(text_content)
return w, h if h > 0 else font_obj.size
else: return int(len(text_content)*font_obj.size*0.6), int(font_obj.size*1.2)
except Exception as e: logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}"); return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)
def _create_placeholder_image_content(self,text_description,filename,size=None):
if size is None: size = self.video_frame_size
img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
if not text_description: text_description="(Placeholder: No prompt text)"
words=text_description.split();current_line=""
for word in words:
test_line=current_line+word+" ";
if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
else:
if current_line: lines.append(current_line.strip());
current_line=word+" "
if current_line.strip(): lines.append(current_line.strip())
if not lines and text_description: lines.append(text_description[:int(max_w//(self._get_text_dimensions("A",self.font)[0] or 10))]+"..." if text_description else "(Text too long)")
elif not lines: lines.append("(Placeholder Text Error)")
_,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
if max_lines_to_display <=0: max_lines_to_display = 1
y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
y_text = y_text_start
for i in range(max_lines_to_display):
line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
if i==6 and max_lines_to_display > 7: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
filepath=os.path.join(self.output_dir,filename);
try:img.save(filepath);return filepath
except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
def _search_pexels_image(self, query, output_filename_base):
if not self.USE_PEXELS or not self.pexels_api_key: return None
headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"} # Request higher quality
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
filepath = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Searching Pexels for: '{query}'"); effective_query = " ".join(query.split()[:5]); params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status(); data = response.json()
if data.get("photos") and len(data["photos"]) > 0:
photo_url = data["photos"][0]["src"]["large2x"]
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath); logger.info(f"Pexels image saved: {filepath}"); return filepath
else: logger.info(f"No photos found on Pexels for query: '{effective_query}'")
except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
return None
def _generate_video_clip_with_runwayml(self, prompt_text, scene_identifier_filename_base, target_duration_seconds=4, input_image_path=None):
if not self.USE_RUNWAYML or not self.runway_api_key:
logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
return None
output_video_filename = scene_identifier_filename_base.replace(".png", "_runway.mp4") # More specific extension
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
# --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL - NEEDS IMPLEMENTATION) ---
# Example:
# if self.runway_client:
# try:
# # result = self.runway_client.generate(text=prompt_text, duration=target_duration_seconds, seed_image=input_image_path)
# # result.save(output_video_filepath)
# # return output_video_filepath
# except Exception as e_runway:
# logger.error(f"Actual RunwayML generation error: {e_runway}", exc_info=True)
# return None
# else: logger.warning("RunwayML client not initialized (placeholder).")
# --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
logger.warning("Using PLACEHOLDER video generation for RunwayML as actual API calls are not implemented.")
return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
if size is None: size = self.video_frame_size
filepath = os.path.join(self.output_dir, filename)
txt_clip = None # Initialize
try:
txt_clip = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font,
bg_color='black', size=size, method='caption').set_duration(duration)
txt_clip.write_videofile(filepath, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Placeholder video saved: {filepath}")
return filepath
except Exception as e: logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True); return None
finally:
if txt_clip and hasattr(txt_clip, 'close'): txt_clip.close()
def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
base_name, _ = os.path.splitext(scene_identifier_filename_base)
asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_prompt_text, 'error_message': 'Generation not attempted'}
if generate_as_video_clip and self.USE_RUNWAYML:
logger.info(f"Attempting RunwayML video clip generation for {base_name}")
video_path = self._generate_video_clip_with_runwayml(
image_prompt_text, base_name,
target_duration_seconds=runway_target_duration,
input_image_path=input_image_for_runway
)
if video_path and os.path.exists(video_path):
asset_info = {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
return asset_info
else: logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image."); asset_info['error_message'] = "RunwayML video generation failed."
image_filename_with_ext = base_name + ".png"
filepath = os.path.join(self.output_dir, image_filename_with_ext)
asset_info['type'] = 'image'
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_retries = 2; attempt_num = 0
for attempt_num in range(max_retries):
try:
logger.info(f"Attempt {attempt_num+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
if revised_prompt: logger.info(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
image_response = requests.get(image_url, timeout=120); image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content));
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
asset_info = {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
return asset_info # Success
except openai.RateLimitError as e_rate: logger.warning(f"OpenAI Rate Limit on attempt {attempt_num+1}: {e_rate}. Retrying..."); time.sleep(5 * (attempt_num + 1)); asset_info['error_message'] = str(e_rate)
except openai.APIError as e_api: logger.error(f"OpenAI API Error: {e_api}"); asset_info['error_message'] = str(e_api); break
except requests.exceptions.RequestException as e_req: logger.error(f"Requests Error (DALL-E download): {e_req}"); asset_info['error_message'] = str(e_req); break
except Exception as e_gen: logger.error(f"Generic error (DALL-E gen): {e_gen}", exc_info=True); asset_info['error_message'] = str(e_gen); break
if asset_info['error']: logger.warning(f"DALL-E generation failed after {attempt_num+1} attempts. Trying Pexels fallback...")
if self.USE_PEXELS and (asset_info['error'] or not (self.USE_AI_IMAGE_GENERATION and self.openai_api_key)):
pexels_query_text = scene_data.get('pexels_search_query_๊ฐ๋
', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext)
if pexels_path:
asset_info = {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
return asset_info
current_error_msg = asset_info.get('error_message', "")
asset_info['error_message'] = (current_error_msg + " Pexels search also failed or disabled.").strip()
if not asset_info['error']: logger.warning("Pexels search failed or was disabled (DALL-E not attempted).")
if asset_info['error']:
logger.warning("All primary generation methods failed. Using placeholder image.")
placeholder_prompt_text = asset_info.get('prompt_used', image_prompt_text)
placeholder_path = self._create_placeholder_image_content(f"[Fallback Placeholder] {placeholder_prompt_text[:100]}...", image_filename_with_ext)
if placeholder_path:
asset_info = {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': placeholder_prompt_text}
else:
current_error_msg = asset_info.get('error_message', "")
asset_info['error_message'] = (current_error_msg + " Placeholder creation also failed.").strip()
return asset_info
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
logger.info("ElevenLabs conditions not met. Skipping audio generation.")
return None
audio_filepath = os.path.join(self.output_dir, output_filename)
try:
logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
audio_stream_method = None
if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
audio_stream_method = self.elevenlabs_client.text_to_speech.stream; logger.info("Using elevenlabs_client.text_to_speech.stream()")
elif hasattr(self.elevenlabs_client, 'generate_stream') : audio_stream_method = self.elevenlabs_client.generate_stream; logger.info("Using elevenlabs_client.generate_stream()")
elif hasattr(self.elevenlabs_client, 'generate'):
logger.info("Using elevenlabs_client.generate() (non-streaming).")
voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
audio_bytes = self.elevenlabs_client.generate(text=text_to_narrate, voice=voice_param, model="eleven_multilingual_v2")
with open(audio_filepath, "wb") as f: f.write(audio_bytes)
logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}"); return audio_filepath
else: logger.error("No recognized audio generation method found on ElevenLabs client."); return None
if audio_stream_method: # Streaming logic
voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings, 'model_dump'): voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.model_dump() # Pydantic v2
elif hasattr(self.elevenlabs_voice_settings, 'dict'): voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.dict() # Pydantic v1
else: voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
audio_data_iterator = audio_stream_method(text=text_to_narrate, model_id="eleven_multilingual_v2", **voice_param_for_stream)
with open(audio_filepath, "wb") as f:
for chunk in audio_data_iterator:
if chunk: f.write(chunk)
logger.info(f"ElevenLabs audio (streamed) saved: {audio_filepath}"); return audio_filepath
except AttributeError as ae: logger.error(f"AttributeError with ElevenLabs client: {ae}. SDK method/params might be different.", exc_info=True)
except Exception as e: logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list:
logger.warning("No asset data provided for animatic assembly.")
return None
processed_moviepy_clips = []
narration_audio_clip = None
final_composite_clip_obj = None
logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path = asset_info.get('path')
asset_type = asset_info.get('type')
target_scene_duration = asset_info.get('duration', 4.5) # Duration for this scene in the animatic
scene_num = asset_info.get('scene_num', i + 1)
key_action = asset_info.get('key_action', '')
logger.info(f"Processing S{scene_num}: Path='{asset_path}', Type='{asset_type}', TargetDur='{target_scene_duration}'s")
if not (asset_path and os.path.exists(asset_path)):
logger.warning(f"S{scene_num}: Asset not found at '{asset_path}'. Skipping."); continue
if target_scene_duration <= 0:
logger.warning(f"S{scene_num}: Invalid duration ({target_scene_duration}s). Skipping."); continue
current_scene_clip = None # The final MoviePy clip for this scene
try:
if asset_type == 'image':
pil_img = Image.open(asset_path)
logger.debug(f"S{scene_num}: Loaded image. Mode: {pil_img.mode}, Size: {pil_img.size}")
# 1. Ensure image is RGBA for consistent alpha handling during processing
img_rgba_source = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
# 2. Thumbnail the RGBA image
img_thumbnail = img_rgba_source.copy() # Work on a copy
resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
img_thumbnail.thumbnail(self.video_frame_size, resample_filter)
logger.debug(f"S{scene_num}: Thumbnailed to: {img_thumbnail.size}")
# 3. Create a target-sized RGBA canvas (fully transparent)
canvas_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0))
# 4. Paste the thumbnailed image (with its alpha) onto the center of the RGBA canvas
xo = (self.video_frame_size[0] - img_thumbnail.width) // 2
yo = (self.video_frame_size[1] - img_thumbnail.height) // 2
canvas_rgba.paste(img_thumbnail, (xo, yo), img_thumbnail) # Use img_thumbnail's alpha as mask
logger.debug(f"S{scene_num}: Image pasted onto transparent RGBA canvas.")
# 5. Create a final RGB image by pasting the RGBA canvas onto an opaque background
# This flattens transparency and ensures an RGB image for MoviePy.
final_rgb_image_for_moviepy = Image.new("RGB", self.video_frame_size, (0, 0, 0)) # Opaque black background
final_rgb_image_for_moviepy.paste(canvas_rgba, mask=canvas_rgba.split()[3]) # Paste using alpha from canvas_rgba
# --- CRITICAL DEBUG STEP: Save the image that will be fed to MoviePy ---
debug_canvas_path = os.path.join(self.output_dir, f"debug_final_rgb_FOR_MOVIEPY_scene_{scene_num}.png")
try:
final_rgb_image_for_moviepy.save(debug_canvas_path)
logger.info(f"DEBUG: Saved final RGB image for MoviePy (S{scene_num}) to {debug_canvas_path}")
except Exception as e_save_canvas:
logger.error(f"DEBUG: Failed to save final_rgb_image_for_moviepy (S{scene_num}): {e_save_canvas}")
frame_np = np.array(final_rgb_image_for_moviepy) # Should be (H, W, 3) dtype uint8
logger.debug(f"S{scene_num}: Converted to NumPy. Shape: {frame_np.shape}, Dtype: {frame_np.dtype}, Size: {frame_np.size}")
if frame_np.size == 0: logger.error(f"S{scene_num}: NumPy array is EMPTY. Skipping."); continue
if frame_np.ndim != 3 or frame_np.shape[2] != 3: logger.error(f"S{scene_num}: NumPy array has unexpected shape {frame_np.shape}. Skipping."); continue
if frame_np.dtype != np.uint8: frame_np = frame_np.astype(np.uint8); logger.warning(f"S{scene_num}: Converted NumPy array dtype to uint8.")
current_clip_base = ImageClip(frame_np, transparent=False).set_duration(target_scene_duration)
logger.debug(f"S{scene_num}: Base ImageClip created from NumPy array.")
current_scene_clip_with_fx = current_clip_base # Start with base
try: # Ken Burns
end_scale = random.uniform(1.03, 1.08)
current_scene_clip_with_fx = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration) if target_scene_duration > 0 else 1).set_position('center')
logger.debug(f"S{scene_num}: Ken Burns effect applied.")
except Exception as e_fx: logger.error(f"S{scene_num}: Ken Burns error: {e_fx}. Using static.", exc_info=False)
current_scene_clip = current_scene_clip_with_fx
elif asset_type == 'video':
logger.debug(f"S{scene_num}: Loading video asset from {asset_path}")
source_video_clip = None # Initialize
try:
source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None)
temp_clip_for_video_asset = source_video_clip
if source_video_clip.duration != target_scene_duration:
if source_video_clip.duration > target_scene_duration:
temp_clip_for_video_asset = source_video_clip.subclip(0, target_scene_duration)
else: # Source is shorter
if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1:
temp_clip_for_video_asset = source_video_clip.loop(duration=target_scene_duration)
else: # Let it play its native length, will be set to target_scene_duration for concat
temp_clip_for_video_asset = source_video_clip.set_duration(source_video_clip.duration)
logger.info(f"S{scene_num}: Video clip ({source_video_clip.duration:.2f}s) shorter than scene target ({target_scene_duration:.2f}s).")
current_scene_clip = temp_clip_for_video_asset.set_duration(target_scene_duration)
if current_scene_clip.size != list(self.video_frame_size):
logger.debug(f"S{scene_num}: Resizing video clip from {current_scene_clip.size} to {self.video_frame_size}")
current_scene_clip = current_scene_clip.resize(self.video_frame_size)
logger.debug(f"S{scene_num}: Video asset processed. Final duration for scene: {current_scene_clip.duration:.2f}s")
except Exception as e_vid_load:
logger.error(f"S{scene_num}: Error loading/processing video file '{asset_path}': {e_vid_load}", exc_info=True)
if source_video_clip and hasattr(source_video_clip, 'close'): source_video_clip.close()
continue # Skip this asset
finally: # Close original source if it was opened and different from the final clip
if source_video_clip and source_video_clip is not current_scene_clip and hasattr(source_video_clip, 'close'):
source_video_clip.close()
else: logger.warning(f"S{scene_num}: Unknown asset type '{asset_type}'. Skipping."); continue
# Add text overlay (common to both image and video assets)
if current_scene_clip and key_action:
logger.debug(f"S{scene_num}: Adding text overlay: '{key_action}'")
text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
if text_overlay_duration > 0:
try:
txt_clip = TextClip(f"Scene {scene_num}\n{key_action}",
fontsize=self.video_overlay_font_size, color=self.video_overlay_font_color,
font=self.video_overlay_font, bg_color='rgba(10,10,20,0.7)',
method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
kerning=-1, stroke_color='black', stroke_width=1.5
).set_duration(text_overlay_duration).set_start(text_overlay_start).set_position(('center', 0.92), relative=True)
current_scene_clip = CompositeVideoClip([current_scene_clip, txt_clip], size=self.video_frame_size, use_bgclip=True)
logger.debug(f"S{scene_num}: Text overlay composited.")
except Exception as e_txt: logger.error(f"S{scene_num}: Error creating TextClip or CompositeVideoClip for text: {e_txt}. Using clip without text.", exc_info=True)
if current_scene_clip:
processed_moviepy_clips.append(current_scene_clip)
logger.info(f"S{scene_num}: Asset successfully processed. Clip duration: {current_scene_clip.duration:.2f}s, Added to final list.")
except Exception as e_asset_proc:
logger.error(f"MAJOR Error processing asset for Scene {scene_num} ({asset_path}): {e_asset_proc}", exc_info=True)
# Ensure clip is closed if it was partially created
if current_scene_clip and hasattr(current_scene_clip, 'reader') and current_scene_clip.reader:
if hasattr(current_scene_clip, 'close'): current_scene_clip.close()
elif current_scene_clip and hasattr(current_scene_clip, 'close'):
current_scene_clip.close()
if not processed_moviepy_clips: logger.warning("No MoviePy clips were successfully processed. Aborting animatic assembly."); return None
transition_duration = 0.75
try:
if not processed_moviepy_clips: logger.error("No clips to concatenate after processing loop."); return None
logger.info(f"Concatenating {len(processed_moviepy_clips)} processed clips.")
if len(processed_moviepy_clips) > 1:
final_composite_clip_obj = concatenate_videoclips(processed_moviepy_clips, padding = -transition_duration if transition_duration > 0 else 0, method="compose")
elif processed_moviepy_clips: final_composite_clip_obj = processed_moviepy_clips[0]
if not final_composite_clip_obj: logger.error("Concatenation resulted in a None clip."); return None
logger.info(f"Concatenated clip duration: {final_composite_clip_obj.duration:.2f}s")
if transition_duration > 0:
if final_composite_clip_obj.duration > transition_duration * 2:
final_composite_clip_obj = final_composite_clip_obj.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
elif final_composite_clip_obj.duration > 0:
final_composite_clip_obj = final_composite_clip_obj.fx(vfx.fadein, min(transition_duration, final_composite_clip_obj.duration/2.0))
logger.debug("Applied fade in/out effects.")
if overall_narration_path and os.path.exists(overall_narration_path) and final_composite_clip_obj.duration > 0:
try:
narration_audio_clip = AudioFileClip(overall_narration_path)
logger.info(f"Adding narration. Video dur: {final_composite_clip_obj.duration:.2f}s, Audio dur: {narration_audio_clip.duration:.2f}s")
final_composite_clip_obj = final_composite_clip_obj.set_audio(narration_audio_clip) # Audio will be cut/padded to video duration
logger.info("Overall narration added to video.")
except Exception as e_audio: logger.error(f"Error adding overall narration: {e_audio}", exc_info=True)
elif final_composite_clip_obj.duration <= 0 : logger.warning("Video has no duration. Audio not added.")
if final_composite_clip_obj and final_composite_clip_obj.duration > 0:
output_path = os.path.join(self.output_dir, output_filename)
logger.info(f"Attempting to write final animatic: {output_path} (Duration: {final_composite_clip_obj.duration:.2f}s)")
moviepy_logger_setting = 'bar' # Default to progress bar
final_composite_clip_obj.write_videofile(
output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
remove_temp=True, threads=os.cpu_count() or 2, logger=moviepy_logger_setting, bitrate="5000k"
)
logger.info(f"Animatic video successfully created: {output_path}")
return output_path
else: logger.error("Final animatic clip is invalid or has zero duration. Cannot write file."); return None
except Exception as e_write: logger.error(f"Error during video file writing or final composition: {e_write}", exc_info=True); return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
clips_to_close = processed_moviepy_clips + ([narration_audio_clip] if narration_audio_clip else []) + ([final_composite_clip_obj] if final_composite_clip_obj else [])
for clip_obj in clips_to_close:
if clip_obj and hasattr(clip_obj, 'close'):
try: clip_obj.close()
except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {e_close}") |