File size: 43,221 Bytes
e22eb13 e0b9b11 bf873b0 8f84892 62838f2 7ff521a 62838f2 b1b7840 bf873b0 8f84892 bf873b0 8f84892 bf873b0 8f84892 bf873b0 e22eb13 8f84892 e22eb13 7ff521a f13d4b2 5089920 f13d4b2 7ff521a 8f84892 b1b7840 7ff521a 5089920 bf873b0 7ff521a 8f84892 4c2220b f13d4b2 287c9ca 7ff521a bf873b0 62838f2 7ff521a bf873b0 8f84892 7ff521a bf873b0 8f84892 bf873b0 7b5fcd5 4e3ee0b bf873b0 8f84892 200c5c4 09d5c67 4e3ee0b bf873b0 4e3ee0b d1bb1cc 4e3ee0b d1bb1cc 4e3ee0b d1bb1cc 4e3ee0b d1bb1cc 4e3ee0b 55ef0ff 4e3ee0b 7b5fcd5 4e3ee0b d1bb1cc 4e3ee0b bf873b0 4e3ee0b 62838f2 4e3ee0b bf873b0 4e3ee0b 7b5fcd5 4e3ee0b b1b7840 4e3ee0b 7b5fcd5 4e3ee0b 7ff521a 4e3ee0b 7b5fcd5 7ff521a 4e3ee0b 8f84892 bf873b0 4e3ee0b 7b5fcd5 4e3ee0b bf873b0 4e3ee0b 7b5fcd5 4e3ee0b 7b5fcd5 4e3ee0b bf873b0 4e3ee0b b1b7840 bf873b0 4e3ee0b bf873b0 4e3ee0b bf873b0 8583908 bf873b0 3313da9 bf873b0 cb93f9c bf873b0 59af6e7 bf873b0 59af6e7 bf873b0 cb93f9c bf873b0 b97795f bf873b0 754c854 bf873b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import mimetypes
import numpy as np
import os
import openai # OpenAI v1.x.x+
import requests
import io
import time
import random
import logging
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
try: # MONKEY PATCH for Pillow/MoviePy compatibility
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow version lacks common Resampling or ANTIALIAS. MoviePy effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
logger = logging.getLogger(__name__)
# logger.setLevel(logging.DEBUG) # Uncomment for maximum verbosity
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_11l_imp: logger.warning(f"ElevenLabs client import failed: {e_11l_imp}. Audio disabled.")
RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClientClass = None
try:
from runwayml import RunwayML as ImportedRunwayMLAPIClientClass
RunwayMLAPIClientClass = ImportedRunwayMLAPIClientClass; RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK imported.")
except Exception as e_rwy_imp: logger.warning(f"RunwayML SDK import failed: {e_rwy_imp}. RunwayML disabled.")
class VisualEngine:
DEFAULT_FONT_SIZE_PIL = 10; PREFERRED_FONT_SIZE_PIL = 20
VIDEO_OVERLAY_FONT_SIZE = 30; VIDEO_OVERLAY_FONT_COLOR = 'white'
DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'; PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold'
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir; os.makedirs(self.output_dir, exist_ok=True)
self.font_filename_pil_preference = "DejaVuSans-Bold.ttf"
font_paths = [ self.font_filename_pil_preference, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil_preference}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
self.resolved_font_path_pil = next((p for p in font_paths if os.path.exists(p)), None)
self.active_font_pil = ImageFont.load_default(); self.active_font_size_pil = self.DEFAULT_FONT_SIZE_PIL; self.active_moviepy_font_name = self.DEFAULT_MOVIEPY_FONT
if self.resolved_font_path_pil:
try: self.active_font_pil = ImageFont.truetype(self.resolved_font_path_pil, self.PREFERRED_FONT_SIZE_PIL); self.active_font_size_pil = self.PREFERRED_FONT_SIZE_PIL; logger.info(f"Pillow font: {self.resolved_font_path_pil} sz {self.active_font_size_pil}."); self.active_moviepy_font_name = 'DejaVu-Sans-Bold' if "dejavu" in self.resolved_font_path_pil.lower() else ('Liberation-Sans-Bold' if "liberation" in self.resolved_font_path_pil.lower() else self.DEFAULT_MOVIEPY_FONT)
except IOError as e_font: logger.error(f"Pillow font IOError '{self.resolved_font_path_pil}': {e_font}. Default.")
else: logger.warning("Preferred Pillow font not found. Default.")
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client_instance = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id # Set initial voice ID from constructor
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings_obj = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings_obj = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass and os.getenv("RUNWAYML_API_SECRET"):
try: self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init from env var at startup.")
except Exception as e_rwy_init: logger.error(f"Initial RunwayML client init failed: {e_rwy_init}"); self.USE_RUNWAYML = False
logger.info("VisualEngine initialized.")
def set_openai_api_key(self, api_key_value): self.openai_api_key = api_key_value; self.USE_AI_IMAGE_GENERATION = bool(api_key_value); logger.info(f"DALL-E status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
# <<< CORRECTED METHOD SIGNATURE AND LOGIC >>>
def set_elevenlabs_api_key(self, api_key_value, voice_id_from_secret=None):
self.elevenlabs_api_key = api_key_value # Store the API key
if voice_id_from_secret: # If a specific voice ID is passed, update the instance's default
self.elevenlabs_voice_id = voice_id_from_secret
logger.info(f"ElevenLabs Voice ID updated to: {self.elevenlabs_voice_id} via set_elevenlabs_api_key.")
# If voice_id_from_secret is None, self.elevenlabs_voice_id retains the value from __init__
if api_key_value and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client_instance = ElevenLabsAPIClient(api_key=api_key_value)
self.USE_ELEVENLABS = bool(self.elevenlabs_client_instance)
logger.info(f"ElevenLabs Client service status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})")
except Exception as e_11l_setkey_init:
logger.error(f"ElevenLabs client initialization error during set_elevenlabs_api_key: {e_11l_setkey_init}. Service Disabled.", exc_info=True)
self.USE_ELEVENLABS = False
self.elevenlabs_client_instance = None
else:
self.USE_ELEVENLABS = False
self.elevenlabs_client_instance = None
if not api_key_value: logger.info(f"ElevenLabs Service Disabled (API key not provided).")
elif not (ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient): logger.info(f"ElevenLabs Service Disabled (SDK issue).")
def set_pexels_api_key(self, api_key_value): self.pexels_api_key = api_key_value; self.USE_PEXELS = bool(api_key_value); logger.info(f"Pexels status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
def set_runway_api_key(self, api_key_value):
self.runway_api_key = api_key_value
if api_key_value:
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass:
if not self.runway_ml_sdk_client_instance:
try:
original_env_secret = os.getenv("RUNWAYML_API_SECRET")
if not original_env_secret: os.environ["RUNWAYML_API_SECRET"] = api_key_value; logger.info("Temp set RUNWAYML_API_SECRET for SDK.")
self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init via set_runway_api_key.")
if not original_env_secret: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temp RUNWAYML_API_SECRET.")
except Exception as e_runway_setkey_init: logger.error(f"RunwayML Client init in set_runway_api_key fail: {e_runway_setkey_init}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_sdk_client_instance=None
else: self.USE_RUNWAYML = True; logger.info("RunwayML Client already init.")
else: logger.warning("RunwayML SDK not imported. Service disabled."); self.USE_RUNWAYML = False
else: self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None; logger.info("RunwayML Disabled (no API key).")
# ... (Rest of the methods: _image_to_data_uri, _map_resolution_to_runway_ratio, _get_text_dimensions,
# _create_placeholder_image_content, _search_pexels_image, _generate_video_clip_with_runwayml,
# _create_placeholder_video_content, generate_scene_asset, generate_narration_audio,
# assemble_animatic_from_assets - keep these as they were in the last fully corrected version
# that addressed the previous syntax errors and had robust image processing for MoviePy)
# For brevity, I'm re-pasting only the corrected _create_placeholder_image_content and _search_pexels_image
# and assuming the other long methods like generate_scene_asset and assemble_animatic_from_assets
# are taken from the previous "expertly crafted" full version which already had robust logic.
# Make sure to use the complete, most up-to-date versions of ALL methods.
def _image_to_data_uri(self, image_path):
# (Implementation from before)
try: mime_type,_=mimetypes.guess_type(image_path)
if not mime_type:ext=os.path.splitext(image_path)[1].lower();mime_map={".png":"image/png",".jpg":"image/jpeg",".jpeg":"image/jpeg",".webp":"image/webp"};mime_type=mime_map.get(ext,"application/octet-stream");
if mime_type=="application/octet-stream":logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
with open(image_path,"rb")as image_file:encoded_string=base64.b64encode(image_file.read()).decode('utf-8')
data_uri=f"data:{mime_type};base64,{encoded_string}";logger.debug(f"Data URI for {os.path.basename(image_path)} (MIME:{mime_type}): {data_uri[:100]}...");return data_uri
except FileNotFoundError:logger.error(f"Img not found {image_path} for data URI.");return None
except Exception as e:logger.error(f"Error converting {image_path} to data URI:{e}",exc_info=True);return None
def _map_resolution_to_runway_ratio(self, width, height):
# (Implementation from before)
ratio_str=f"{width}:{height}";supported_ratios_gen4=["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"];
if ratio_str in supported_ratios_gen4:return ratio_str
logger.warning(f"Res {ratio_str} not in Gen-4 list. Default 1280:720.");return "1280:720"
def _get_text_dimensions(self, text_content, font_object_pil):
# (Implementation from before)
dch=getattr(font_object_pil,'size',self.active_font_size_pil);
if not text_content:return 0,dch
try:
if hasattr(font_object_pil,'getbbox'):bb=font_object_pil.getbbox(text_content);w=bb[2]-bb[0];h=bb[3]-bb[1];return w,h if h>0 else dch
elif hasattr(font_object_pil,'getsize'):w,h=font_object_pil.getsize(text_content);return w,h if h>0 else dch
else:return int(len(text_content)*dch*0.6),int(dch*1.2)
except Exception as e_getdim_inner:logger.warning(f"Error in _get_text_dimensions:{e_getdim_inner}");return int(len(text_content)*self.active_font_size_pil*0.6),int(self.active_font_size_pil*1.2)
def _create_placeholder_image_content(self,text_description,filename,size=None):
# (Corrected version from previous response)
if size is None: size = self.video_frame_size
img = Image.new('RGB', size, color=(20, 20, 40)); d = ImageDraw.Draw(img); padding = 25
max_w = size[0] - (2 * padding); lines_for_placeholder = []
if not text_description: text_description = "(Placeholder Image)"
words_list = text_description.split(); current_line_buffer = ""
for word_idx, word_item in enumerate(words_list):
prospective_addition = word_item + (" " if word_idx < len(words_list) - 1 else "")
test_line_candidate = current_line_buffer + prospective_addition
current_w_text, _ = self._get_text_dimensions(test_line_candidate, self.active_font_pil)
if current_w_text == 0 and test_line_candidate.strip(): current_w_text = len(test_line_candidate) * (self.active_font_size_pil * 0.6)
if current_w_text <= max_w: current_line_buffer = test_line_candidate
else:
if current_line_buffer.strip(): lines_for_placeholder.append(current_line_buffer.strip())
current_line_buffer = prospective_addition
if current_line_buffer.strip(): lines_for_placeholder.append(current_line_buffer.strip())
if not lines_for_placeholder and text_description:
avg_char_w_est, _ = self._get_text_dimensions("W", self.active_font_pil); avg_char_w_est = avg_char_w_est or (self.active_font_size_pil * 0.6)
chars_per_line_est = int(max_w / avg_char_w_est) if avg_char_w_est > 0 else 20
lines_for_placeholder.append(text_description[:chars_per_line_est] + ("..." if len(text_description) > chars_per_line_est else ""))
elif not lines_for_placeholder: lines_for_placeholder.append("(Placeholder Error)")
_, single_h = self._get_text_dimensions("Ay", self.active_font_pil); single_h = single_h if single_h > 0 else self.active_font_size_pil + 2
max_l = min(len(lines_for_placeholder), (size[1] - (2 * padding)) // (single_h + 2)) if single_h > 0 else 1; max_l = max(1, max_l)
y_p = padding + (size[1] - (2 * padding) - max_l * (single_h + 2)) / 2.0
for i_line in range(max_l):
line_txt_content = lines_for_placeholder[i_line]; line_w_val, _ = self._get_text_dimensions(line_txt_content, self.active_font_pil)
if line_w_val == 0 and line_txt_content.strip(): line_w_val = len(line_txt_content) * (self.active_font_size_pil * 0.6)
x_p = (size[0] - line_w_val) / 2.0
try: d.text((x_p, y_p), line_txt_content, font=self.active_font_pil, fill=(200, 200, 180))
except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for '{line_txt_content}'")
y_p += single_h + 2
if i_line == 6 and max_l > 7:
try: d.text((x_p, y_p), "...", font=self.active_font_pil, fill=(200, 200, 180))
except Exception as e_elip: logger.error(f"Pillow d.text ellipsis error: {e_elip}"); break
filepath_placeholder = os.path.join(self.output_dir, filename)
try: img.save(filepath_placeholder); return filepath_placeholder
except Exception as e_save: logger.error(f"Saving placeholder image '{filepath_placeholder}' error: {e_save}", exc_info=True); return None
def _search_pexels_image(self, query_str, output_fn_base):
# (Corrected version from previous response)
if not self.USE_PEXELS or not self.pexels_api_key: return None
http_headers = {"Authorization": self.pexels_api_key}
http_params = {"query": query_str, "per_page": 1, "orientation": "landscape", "size": "large2x"}
base_name_px, _ = os.path.splitext(output_fn_base)
pexels_fn_str = base_name_px + f"_pexels_{random.randint(1000,9999)}.jpg"
file_path_px = os.path.join(self.output_dir, pexels_fn_str)
try:
logger.info(f"Pexels: Searching for '{query_str}'")
eff_query_px = " ".join(query_str.split()[:5])
http_params["query"] = eff_query_px
response_px = requests.get("https://api.pexels.com/v1/search", headers=http_headers, params=http_params, timeout=20)
response_px.raise_for_status()
data_px = response_px.json()
if data_px.get("photos") and len(data_px["photos"]) > 0:
photo_details_px = data_px["photos"][0]
photo_url_px = photo_details_px.get("src", {}).get("large2x")
if not photo_url_px: logger.warning(f"Pexels: 'large2x' URL missing for '{eff_query_px}'. Details: {photo_details_px}"); return None
image_response_px = requests.get(photo_url_px, timeout=60); image_response_px.raise_for_status()
img_pil_data_px = Image.open(io.BytesIO(image_response_px.content))
if img_pil_data_px.mode != 'RGB': img_pil_data_px = img_pil_data_px.convert('RGB')
img_pil_data_px.save(file_path_px); logger.info(f"Pexels: Image saved to {file_path_px}"); return file_path_px
else: logger.info(f"Pexels: No photos for '{eff_query_px}'."); return None
except requests.exceptions.RequestException as e_req_px: logger.error(f"Pexels: RequestException for '{query_str}': {e_req_px}", exc_info=False); return None
except Exception as e_px_gen: logger.error(f"Pexels: General error for '{query_str}': {e_px_gen}", exc_info=True); return None
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
# (Updated RunwayML integration from before)
if not self.USE_RUNWAYML or not self.runway_ml_sdk_client_instance: logger.warning("RunwayML not enabled/client not init. Skip video."); return None
if not input_image_path or not os.path.exists(input_image_path): logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}"); return None
image_data_uri_str = self._image_to_data_uri(input_image_path)
if not image_data_uri_str: return None
runway_dur = 10 if target_duration_seconds >= 8 else 5
runway_ratio = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
base_name_for_runway_vid, _ = os.path.splitext(scene_identifier_filename_base); output_vid_fn = base_name_for_runway_vid + f"_runway_gen4_d{runway_dur}s.mp4"
output_vid_fp = os.path.join(self.output_dir, output_vid_fn)
logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', img='{os.path.basename(input_image_path)}', dur={runway_dur}s, ratio='{runway_ratio}'")
try:
task_submitted_runway = self.runway_ml_sdk_client_instance.image_to_video.create(model='gen4_turbo', prompt_image=image_data_uri_str, prompt_text=text_prompt_for_motion, duration=runway_dur, ratio=runway_ratio)
task_id_runway = task_submitted_runway.id; logger.info(f"Runway Gen-4 task ID: {task_id_runway}. Polling...")
poll_sec=10; max_poll_count=36; poll_start_time = time.time()
while time.time() - poll_start_time < max_poll_count * poll_sec:
time.sleep(poll_sec); task_details_runway = self.runway_ml_sdk_client_instance.tasks.retrieve(id=task_id_runway)
logger.info(f"Runway task {task_id_runway} status: {task_details_runway.status}")
if task_details_runway.status == 'SUCCEEDED':
output_url_runway = getattr(getattr(task_details_runway,'output',None),'url',None) or \
(getattr(task_details_runway,'artifacts',None) and task_details_runway.artifacts and hasattr(task_details_runway.artifacts[0],'url')and task_details_runway.artifacts[0].url) or \
(getattr(task_details_runway,'artifacts',None) and task_details_runway.artifacts and hasattr(task_details_runway.artifacts[0],'download_url')and task_details_runway.artifacts[0].download_url)
if not output_url_runway: logger.error(f"Runway task {task_id_runway} SUCCEEDED, but no output URL. Details: {vars(task_details_runway) if hasattr(task_details_runway,'__dict__') else task_details_runway}"); return None
logger.info(f"Runway task {task_id_runway} SUCCEEDED. Downloading: {output_url_runway}")
video_resp_get = requests.get(output_url_runway, stream=True, timeout=300); video_resp_get.raise_for_status()
with open(output_vid_fp,'wb') as f_vid:
for chunk_data in video_resp_get.iter_content(chunk_size=8192): f_vid.write(chunk_data)
logger.info(f"Runway Gen-4 video saved: {output_vid_fp}"); return output_vid_fp
elif task_details_runway.status in ['FAILED','ABORTED','ERROR']:
err_msg_runway = getattr(task_details_runway,'error_message',None) or getattr(getattr(task_details_runway,'output',None),'error',"Unknown Runway error.")
logger.error(f"Runway task {task_id_runway} status: {task_details_runway.status}. Error: {err_msg_runway}"); return None
logger.warning(f"Runway task {task_id_runway} timed out."); return None
except AttributeError as ae_sdk: logger.error(f"RunwayML SDK AttrError: {ae_sdk}. SDK/methods changed?", exc_info=True); return None
except Exception as e_runway_gen: logger.error(f"Runway Gen-4 API error: {e_runway_gen}", exc_info=True); return None
def _create_placeholder_video_content(self, text_desc_ph, filename_ph, duration_ph=4, size_ph=None):
# (Corrected from previous response)
if size_ph is None: size_ph = self.video_frame_size
filepath_ph = os.path.join(self.output_dir, filename_ph)
text_clip_ph = None
try:
text_clip_ph = TextClip(text_desc_ph, fontsize=50, color='white', font=self.video_overlay_font,
bg_color='black', size=size_ph, method='caption').set_duration(duration_ph)
text_clip_ph.write_videofile(filepath_ph, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Generic placeholder video created: {filepath_ph}")
return filepath_ph
except Exception as e_ph_vid:
logger.error(f"Failed to create generic placeholder video '{filepath_ph}': {e_ph_vid}", exc_info=True)
return None
finally:
if text_clip_ph and hasattr(text_clip_ph, 'close'):
try: text_clip_ph.close()
except Exception as e_cl_phv: logger.warning(f"Ignoring error closing placeholder TextClip: {e_cl_phv}")
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
scene_data_dict, scene_identifier_fn_base, # Changed scene_data to scene_data_dict
generate_as_video_clip_flag=False, runway_target_dur_val=5):
# (Corrected DALL-E loop from previous response)
base_name_asset, _ = os.path.splitext(scene_identifier_fn_base)
asset_info_result = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
path_for_input_image_runway = None
fn_for_base_image = base_name_asset + ("_base_for_video.png" if generate_as_video_clip_flag else ".png")
fp_for_base_image = os.path.join(self.output_dir, fn_for_base_image)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_r_dalle, attempt_count_dalle = 2,0;
for att_n_dalle in range(max_r_dalle):
attempt_count_dalle = att_n_dalle + 1
try:
logger.info(f"Att {attempt_count_dalle} DALL-E (base img): {image_generation_prompt_text[:70]}..."); oai_cl = openai.OpenAI(api_key=self.openai_api_key,timeout=90.0); oai_r = oai_cl.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid"); oai_iu = oai_r.data[0].url; oai_rp = getattr(oai_r.data[0],'revised_prompt',None);
if oai_rp: logger.info(f"DALL-E revised: {oai_rp[:70]}...")
oai_ir = requests.get(oai_iu,timeout=120); oai_ir.raise_for_status(); oai_id = Image.open(io.BytesIO(oai_ir.content));
if oai_id.mode!='RGB': oai_id=oai_id.convert('RGB')
oai_id.save(fp_for_base_image); logger.info(f"DALL-E base img saved: {fp_for_base_image}"); path_for_input_image_runway=fp_for_base_image; asset_info_result={'path':fp_for_base_image,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':oai_rp}; break
except openai.RateLimitError as e_oai_rl: logger.warning(f"OpenAI RateLimit Att {attempt_count_dalle}:{e_oai_rl}.Retry...");time.sleep(5*attempt_count_dalle);asset_info_result['error_message']=str(e_oai_rl)
except openai.APIError as e_oai_api: logger.error(f"OpenAI APIError Att {attempt_count_dalle}:{e_oai_api}");asset_info_result['error_message']=str(e_oai_api);break
except requests.exceptions.RequestException as e_oai_req: logger.error(f"Requests Err DALL-E Att {attempt_count_dalle}:{e_oai_req}");asset_info_result['error_message']=str(e_oai_req);break
except Exception as e_oai_gen: logger.error(f"General DALL-E Err Att {attempt_count_dalle}:{e_oai_gen}",exc_info=True);asset_info_result['error_message']=str(e_oai_gen);break
if asset_info_result['error']: logger.warning(f"DALL-E failed after {attempt_count_dalle} attempts for base img.")
if asset_info_result['error'] and self.USE_PEXELS:
logger.info("Trying Pexels for base img.");px_qt=scene_data_dict.get('pexels_search_query_๊ฐ๋
',f"{scene_data_dict.get('emotional_beat','')} {scene_data_dict.get('setting_description','')}");px_pp=self._search_pexels_image(px_qt,fn_for_base_image);
if px_pp:path_for_input_image_runway=px_pp;asset_info_result={'path':px_pp,'type':'image','error':False,'prompt_used':f"Pexels:{px_qt}"}
else:current_em_px=asset_info_result.get('error_message',"");asset_info_result['error_message']=(current_em_px+" Pexels failed for base.").strip()
if asset_info_result['error']:
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ph_ppt=asset_info_result.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ph_ppt[:70]}...",fn_for_base_image);
if php:path_for_input_image_runway=php;asset_info_result={'path':php,'type':'image','error':False,'prompt_used':ph_ppt}
else:current_em_ph=asset_info_result.get('error_message',"");asset_info_result['error_message']=(current_em_ph+" Base placeholder failed.").strip()
if generate_as_video_clip_flag:
if not path_for_input_image_runway:logger.error("RunwayML video: base img failed.");asset_info_result['error']=True;asset_info_result['error_message']=(asset_info_result.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info_result['type']='none';return asset_info_result
if self.USE_RUNWAYML:
runway_video_p=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,path_for_input_image_runway,base_name_asset,runway_target_dur_val)
if runway_video_p and os.path.exists(runway_video_p):asset_info_result={'path':runway_video_p,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':path_for_input_image_runway}
else:logger.warning(f"RunwayML video failed for {base_name_asset}. Fallback to base img.");asset_info_result['error']=True;asset_info_result['error_message']=(asset_info_result.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info_result['path']=path_for_input_image_runway;asset_info_result['type']='image';asset_info_result['prompt_used']=image_generation_prompt_text
else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info_result['error']=True;asset_info_result['error_message']=(asset_info_result.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info_result['path']=path_for_input_image_runway;asset_info_result['type']='image';asset_info_result['prompt_used']=image_generation_prompt_text
return asset_info_result
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
# <<< CORRECTED VERSION OF THIS METHOD >>>
if not self.USE_ELEVENLABS or not self.elevenlabs_client_instance or not text_to_narrate:
logger.info("ElevenLabs conditions not met (service disabled, client not init, or no text). Skipping audio generation.")
return None
audio_filepath_narration = os.path.join(self.output_dir, output_filename)
try:
logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for text: \"{text_to_narrate[:70]}...\"")
audio_stream_method_11l = None
if hasattr(self.elevenlabs_client_instance, 'text_to_speech') and hasattr(self.elevenlabs_client_instance.text_to_speech, 'stream'):
audio_stream_method_11l = self.elevenlabs_client_instance.text_to_speech.stream; logger.info("Using ElevenLabs SDK method: client.text_to_speech.stream()")
elif hasattr(self.elevenlabs_client_instance, 'generate_stream'):
audio_stream_method_11l = self.elevenlabs_client_instance.generate_stream; logger.info("Using ElevenLabs SDK method: client.generate_stream()")
elif hasattr(self.elevenlabs_client_instance, 'generate'):
logger.info("Using ElevenLabs SDK method: client.generate() (non-streaming).")
voice_param_11l = str(self.elevenlabs_voice_id)
if Voice and self.elevenlabs_voice_settings_obj: voice_param_11l = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings_obj)
audio_bytes_data = self.elevenlabs_client_instance.generate(text=text_to_narrate, voice=voice_param_11l, model="eleven_multilingual_v2")
with open(audio_filepath_narration, "wb") as audio_file_out: audio_file_out.write(audio_bytes_data)
logger.info(f"ElevenLabs audio (non-streamed) saved successfully to: {audio_filepath_narration}"); return audio_filepath_narration
else: logger.error("No recognized audio generation method found on the ElevenLabs client instance."); return None
if audio_stream_method_11l:
params_for_voice_stream = {"voice_id": str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings_obj:
if hasattr(self.elevenlabs_voice_settings_obj, 'model_dump'): params_for_voice_stream["voice_settings"] = self.elevenlabs_voice_settings_obj.model_dump()
elif hasattr(self.elevenlabs_voice_settings_obj, 'dict'): params_for_voice_stream["voice_settings"] = self.elevenlabs_voice_settings_obj.dict()
else: params_for_voice_stream["voice_settings"] = self.elevenlabs_voice_settings_obj
audio_data_iterator_11l = audio_stream_method_11l(text=text_to_narrate, model_id="eleven_multilingual_v2", **params_for_voice_stream)
with open(audio_filepath_narration, "wb") as audio_file_out_stream:
for audio_chunk_data in audio_data_iterator_11l:
if audio_chunk_data: audio_file_out_stream.write(audio_chunk_data)
logger.info(f"ElevenLabs audio (streamed) saved successfully to: {audio_filepath_narration}"); return audio_filepath_narration
except AttributeError as ae_11l_sdk: logger.error(f"AttributeError with ElevenLabs SDK client: {ae_11l_sdk}. SDK version/methods might differ.", exc_info=True); return None
except Exception as e_11l_general_audio: logger.error(f"General error during ElevenLabs audio generation: {e_11l_general_audio}", exc_info=True); return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
# (Keep as in the version with robust image processing, C-contiguous array, debug saves, and pix_fmt)
if not asset_data_list: logger.warning("No assets for animatic."); return None
processed_moviepy_clips_list = []; narration_audio_clip_mvpy = None; final_video_output_clip = None
logger.info(f"Assembling from {len(asset_data_list)} assets. Target Frame: {self.video_frame_size}.")
for i_asset, asset_info_item_loop in enumerate(asset_data_list):
path_of_asset, type_of_asset, duration_for_scene = asset_info_item_loop.get('path'), asset_info_item_loop.get('type'), asset_info_item_loop.get('duration', 4.5)
num_of_scene, action_in_key = asset_info_item_loop.get('scene_num', i_asset + 1), asset_info_item_loop.get('key_action', '')
logger.info(f"S{num_of_scene}: Path='{path_of_asset}', Type='{type_of_asset}', Dur='{duration_for_scene}'s")
if not (path_of_asset and os.path.exists(path_of_asset)): logger.warning(f"S{num_of_scene}: Not found '{path_of_asset}'. Skip."); continue
if duration_for_scene <= 0: logger.warning(f"S{num_of_scene}: Invalid duration ({duration_for_scene}s). Skip."); continue
active_scene_clip = None
try:
if type_of_asset == 'image':
opened_pil_img = Image.open(path_of_asset); logger.debug(f"S{num_of_scene}: Loaded img. Mode:{opened_pil_img.mode}, Size:{opened_pil_img.size}")
converted_img_rgba = opened_pil_img.convert('RGBA') if opened_pil_img.mode != 'RGBA' else opened_pil_img.copy()
thumbnailed_img = converted_img_rgba.copy(); resample_f = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumbnailed_img.thumbnail(self.video_frame_size,resample_f)
rgba_canvas = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); pos_x,pos_y=(self.video_frame_size[0]-thumbnailed_img.width)//2,(self.video_frame_size[1]-thumbnailed_img.height)//2
rgba_canvas.paste(thumbnailed_img,(pos_x,pos_y),thumbnailed_img)
final_rgb_img_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_img_pil.paste(rgba_canvas,mask=rgba_canvas.split()[3])
debug_path_img_pre_numpy = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{num_of_scene}.png"); final_rgb_img_pil.save(debug_path_img_pre_numpy); logger.info(f"DEBUG: Saved PRE_NUMPY_S{num_of_scene} to {debug_path_img_pre_numpy}")
numpy_frame_arr = np.array(final_rgb_img_pil,dtype=np.uint8);
if not numpy_frame_arr.flags['C_CONTIGUOUS']: numpy_frame_arr=np.ascontiguousarray(numpy_frame_arr,dtype=np.uint8)
logger.debug(f"S{num_of_scene}: NumPy for MoviePy. Shape:{numpy_frame_arr.shape}, DType:{numpy_frame_arr.dtype}, C-Contig:{numpy_frame_arr.flags['C_CONTIGUOUS']}")
if numpy_frame_arr.size==0 or numpy_frame_arr.ndim!=3 or numpy_frame_arr.shape[2]!=3: logger.error(f"S{num_of_scene}: Invalid NumPy array for MoviePy. Skip."); continue
base_image_clip = ImageClip(numpy_frame_arr,transparent=False).set_duration(duration_for_scene)
debug_path_moviepy_frame=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{num_of_scene}.png"); base_image_clip.save_frame(debug_path_moviepy_frame,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{num_of_scene} to {debug_path_moviepy_frame}")
fx_image_clip = base_image_clip
try: scale_end_kb=random.uniform(1.03,1.08); fx_image_clip=base_image_clip.fx(vfx.resize,lambda t_val:1+(scale_end_kb-1)*(t_val/duration_for_scene) if duration_for_scene>0 else 1).set_position('center')
except Exception as e_kb_fx: logger.error(f"S{num_of_scene} Ken Burns error: {e_kb_fx}",exc_info=False)
active_scene_clip = fx_image_clip
elif type_of_asset == 'video':
source_video_clip_obj=None
try:
source_video_clip_obj=VideoFileClip(path_of_asset,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
temp_video_clip_obj_loop=source_video_clip_obj
if source_video_clip_obj.duration!=duration_for_scene:
if source_video_clip_obj.duration>duration_for_scene:temp_video_clip_obj_loop=source_video_clip_obj.subclip(0,duration_for_scene)
else:
if duration_for_scene/source_video_clip_obj.duration > 1.5 and source_video_clip_obj.duration>0.1:temp_video_clip_obj_loop=source_video_clip_obj.loop(duration=duration_for_scene)
else:temp_video_clip_obj_loop=source_video_clip_obj.set_duration(source_video_clip_obj.duration);logger.info(f"S{num_of_scene} Video clip ({source_video_clip_obj.duration:.2f}s) shorter than target ({duration_for_scene:.2f}s).")
active_scene_clip=temp_video_clip_obj_loop.set_duration(duration_for_scene)
if active_scene_clip.size!=list(self.video_frame_size):active_scene_clip=active_scene_clip.resize(self.video_frame_size)
except Exception as e_vid_load_loop:logger.error(f"S{num_of_scene} Video load error '{path_of_asset}':{e_vid_load_loop}",exc_info=True);continue
finally:
if source_video_clip_obj and source_video_clip_obj is not active_scene_clip and hasattr(source_video_clip_obj,'close'):source_video_clip_obj.close()
else: logger.warning(f"S{num_of_scene} Unknown asset type '{type_of_asset}'. Skip."); continue
if active_scene_clip and action_in_key:
try:
dur_text_overlay=min(active_scene_clip.duration-0.5,active_scene_clip.duration*0.8)if active_scene_clip.duration>0.5 else active_scene_clip.duration; start_text_overlay=0.25
if dur_text_overlay > 0:
text_clip_for_overlay=TextClip(f"Scene {num_of_scene}\n{action_in_key}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.active_moviepy_font_name,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(dur_text_overlay).set_start(start_text_overlay).set_position(('center',0.92),relative=True)
active_scene_clip=CompositeVideoClip([active_scene_clip,text_clip_for_overlay],size=self.video_frame_size,use_bgclip=True)
else: logger.warning(f"S{num_of_scene}: Text overlay duration zero. Skip text.")
except Exception as e_txt_comp:logger.error(f"S{num_of_scene} TextClip error:{e_txt_comp}. No text.",exc_info=True)
if active_scene_clip:processed_moviepy_clips_list.append(active_scene_clip);logger.info(f"S{num_of_scene} Processed. Dur:{active_scene_clip.duration:.2f}s.")
except Exception as e_asset_loop_main:logger.error(f"MAJOR Error processing asset for S{num_of_scene} ({path_of_asset}):{e_asset_loop_main}",exc_info=True)
finally:
if active_scene_clip and hasattr(active_scene_clip,'close'):
try: active_scene_clip.close()
except: pass
if not processed_moviepy_clips_list:logger.warning("No clips processed for animatic. Aborting.");return None
transition_duration_val=0.75
try:
logger.info(f"Concatenating {len(processed_moviepy_clips_list)} clips for final animatic.");
if len(processed_moviepy_clips_list)>1:final_video_output_clip=concatenate_videoclips(processed_moviepy_clips_list,padding=-transition_duration_val if transition_duration_val>0 else 0,method="compose")
elif processed_moviepy_clips_list:final_video_output_clip=processed_moviepy_clips_list[0]
if not final_video_output_clip:logger.error("Concatenation resulted in a None clip. Aborting.");return None
logger.info(f"Concatenated animatic duration:{final_video_output_clip.duration:.2f}s")
if transition_duration_val>0 and final_video_output_clip.duration>0:
if final_video_output_clip.duration>transition_duration_val*2:final_video_output_clip=final_video_output_clip.fx(vfx.fadein,transition_duration_val).fx(vfx.fadeout,transition_duration_val)
else:final_video_output_clip=final_video_output_clip.fx(vfx.fadein,min(transition_duration_val,final_video_output_clip.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_video_output_clip.duration>0:
try:narration_audio_clip_mvpy=AudioFileClip(overall_narration_path);final_video_output_clip=final_video_output_clip.set_audio(narration_audio_clip_mvpy);logger.info("Overall narration added to animatic.")
except Exception as e_narr_add:logger.error(f"Error adding narration to animatic:{e_narr_add}",exc_info=True)
elif final_video_output_clip.duration<=0:logger.warning("Animatic has no duration. Audio not added.")
if final_video_output_clip and final_video_output_clip.duration>0:
final_output_path_str=os.path.join(self.output_dir,output_filename);logger.info(f"Writing final animatic video to:{final_output_path_str} (Duration:{final_video_output_clip.duration:.2f}s)")
final_video_output_clip.write_videofile(final_output_path_str,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
logger.info(f"Animatic video created successfully:{final_output_path_str}");return final_output_path_str
else:logger.error("Final animatic clip is invalid or has zero duration. Cannot write video file.");return None
except Exception as e_vid_write_final:logger.error(f"Error during final animatic video file writing or composition:{e_vid_write_final}",exc_info=True);return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` main finally block.")
all_clips_to_close_list = processed_moviepy_clips_list + ([narration_audio_clip_mvpy] if narration_audio_clip_mvpy else []) + ([final_video_output_clip] if final_video_output_clip else [])
for clip_item_to_close in all_clips_to_close_list:
if clip_item_to_close and hasattr(clip_item_to_close, 'close'):
try: clip_item_to_close.close()
except Exception as e_final_close: logger.warning(f"Ignoring error while closing a MoviePy clip: {type(clip_item_to_close).__name__} - {e_final_close}") |