File size: 30,261 Bytes
287c9ca e0b9b11 92cb699 5089920 92cb699 5089920 9840152 5089920 990e23e 92cb699 5089920 92cb699 200c5c4 59af6e7 f13d4b2 5089920 59af6e7 f13d4b2 5089920 f13d4b2 59af6e7 5089920 59af6e7 5089920 59af6e7 4c2220b f13d4b2 287c9ca 92cb699 e0b9b11 59af6e7 5089920 3313da9 59af6e7 5089920 e0b9b11 59af6e7 e0b9b11 59af6e7 e0b9b11 f02ab98 5089920 3313da9 59af6e7 92cb699 59af6e7 5089920 f02ab98 59af6e7 200c5c4 09d5c67 59af6e7 92cb699 f13d4b2 5089920 59af6e7 5089920 3313da9 59af6e7 5089920 63525c7 59af6e7 63525c7 5089920 59af6e7 29c2122 59af6e7 9840152 59af6e7 9840152 59af6e7 9840152 b97795f 59af6e7 5089920 59af6e7 5089920 59af6e7 5089920 59af6e7 5089920 63525c7 5089920 59af6e7 09d5c67 59af6e7 9d84ba9 59af6e7 63525c7 59af6e7 3313da9 59af6e7 3313da9 29c2122 e0b9b11 59af6e7 9840152 59af6e7 3313da9 59af6e7 5089920 59af6e7 9840152 59af6e7 5089920 3313da9 5089920 59af6e7 5089920 92cb699 3313da9 63525c7 5089920 3313da9 5089920 3313da9 5089920 59af6e7 8583908 5089920 3313da9 63525c7 59af6e7 3313da9 63525c7 59af6e7 3313da9 63525c7 59af6e7 3313da9 59af6e7 3313da9 59af6e7 3313da9 59af6e7 3313da9 59af6e7 63525c7 3313da9 59af6e7 3313da9 59af6e7 63525c7 5089920 3313da9 5089920 59af6e7 3313da9 59af6e7 3313da9 59af6e7 3313da9 59af6e7 5089920 63525c7 3313da9 59af6e7 92cb699 59af6e7 3313da9 59af6e7 3313da9 59af6e7 63525c7 5089920 b97795f 59af6e7 3313da9 59af6e7 3313da9 5089920 59af6e7 5089920 3313da9 59af6e7 3313da9 92cb699 3313da9 5089920 59af6e7 3313da9 59af6e7 3313da9 59af6e7 3313da9 59af6e7 754c854 3313da9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'): # Pillow 8
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
# --- END MONKEY PATCH ---
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# --- ElevenLabs Client Import ---
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_eleven: logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")
# --- RunwayML Client Import (Placeholder) ---
RUNWAYML_SDK_IMPORTED = False; RunwayMLClient = None
try:
logger.info("RunwayML SDK import is a placeholder.")
except ImportError: logger.warning("RunwayML SDK (placeholder) not found. RunwayML disabled.")
except Exception as e_runway_sdk: logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "DejaVuSans-Bold.ttf" # More standard than arial.ttf
font_paths_to_try = [
self.font_filename,
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf",
f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf" # Previous custom path
]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20
self.video_overlay_font_size = 30
self.video_overlay_font_color = 'white'
self.video_overlay_font = 'DejaVu-Sans-Bold' # ImageMagick name for DejaVuSans-Bold
try:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
if self.font_path_pil: logger.info(f"Pillow font loaded: {self.font_path_pil}.")
else: logger.warning("Using default Pillow font."); self.font_size_pil = 10
except IOError as e_font: logger.error(f"Pillow font loading IOError: {e_font}. Using default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_client = None
logger.info("VisualEngine initialized.")
def set_openai_api_key(self,k): self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k); logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
self.elevenlabs_api_key=api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS=bool(self.elevenlabs_client); logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
def set_pexels_api_key(self,k): self.pexels_api_key=k; self.USE_PEXELS=bool(k); logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
def set_runway_api_key(self, k):
self.runway_api_key = k
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
try: self.USE_RUNWAYML = True; logger.info(f"RunwayML Client (Placeholder SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
except Exception as e: logger.error(f"RunwayML client (Placeholder SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
elif k: self.USE_RUNWAYML = True; logger.info("RunwayML API Key set (direct API or placeholder).")
else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")
def _get_text_dimensions(self,tc,fo): di=fo.size if hasattr(fo,'size') else self.font_size_pil; return (0,di) if not tc else (lambda b:(b[2]-b[0],b[3]-b[1] if b[3]-b[1]>0 else di))(fo.getbbox(tc)) if hasattr(fo,'getbbox') else (lambda s:(s[0],s[1] if s[1]>0 else di))(fo.getsize(tc)) if hasattr(fo,'getsize') else (int(len(tc)*di*0.6),int(di*1.2))
def _create_placeholder_image_content(self,td,fn,sz=None):
# ... (Keeping this method as it was, assuming it's not the source of video corruption) ...
if sz is None: sz = self.video_frame_size
img=Image.new('RGB',sz,color=(20,20,40));d=ImageDraw.Draw(img);pd=25;mw=sz[0]-(2*pd);ls=[];
if not td: td="(Placeholder: No prompt text)"
ws=td.split();cl=""
for w in ws:
tl=cl+w+" ";
if self._get_text_dimensions(tl,self.font)[0] <= mw: cl=tl
else:
if cl: ls.append(cl.strip());
cl=w+" "
if cl.strip(): ls.append(cl.strip())
if not ls and td: ls.append(td[:int(mw//(self._get_text_dimensions("A",self.font)[0] or 10))]+"..." if td else "(Text too long)")
elif not ls: ls.append("(Placeholder Text Error)")
_,slh=self._get_text_dimensions("Ay",self.font); slh = slh if slh > 0 else self.font_size_pil + 2
mld=min(len(ls),(sz[1]-(2*pd))//(slh+2)) if slh > 0 else 1
if mld <=0: mld = 1
yts = pd + (sz[1]-(2*pd) - mld*(slh+2))/2.0
yt = yts
for i in range(mld):
lc=ls[i];lw,_=self._get_text_dimensions(lc,self.font);xt=(sz[0]-lw)/2.0
d.text((xt,yt),lc,font=self.font,fill=(200,200,180));yt+=slh+2
if i==6 and mld > 7: d.text((xt,yt),"...",font=self.font,fill=(200,200,180));break
fp=os.path.join(self.output_dir,fn);
try:img.save(fp);return fp
except Exception as e:logger.error(f"Saving placeholder image {fp}: {e}", exc_info=True);return None
def _search_pexels_image(self, q, ofnb):
# ... (Keeping this method as it was) ...
if not self.USE_PEXELS or not self.pexels_api_key: return None
h = {"Authorization": self.pexels_api_key}; p = {"query": q, "per_page": 1, "orientation": "landscape", "size": "large2x"}
pfn = ofnb.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
fp = os.path.join(self.output_dir, pfn)
try:
logger.info(f"Pexels search: '{q}'"); eq = " ".join(q.split()[:5]); p["query"] = eq
r = requests.get("https://api.pexels.com/v1/search", headers=h, params=p, timeout=20)
r.raise_for_status(); d = r.json()
if d.get("photos") and len(d["photos"]) > 0:
pu = d["photos"][0]["src"]["large2x"]
ir = requests.get(pu, timeout=60); ir.raise_for_status()
id = Image.open(io.BytesIO(ir.content))
if id.mode != 'RGB': id = id.convert('RGB')
id.save(fp); logger.info(f"Pexels image saved: {fp}"); return fp
else: logger.info(f"No photos Pexels: '{eq}'")
except Exception as e: logger.error(f"Pexels error ('{q}'): {e}", exc_info=True)
return None
def _generate_video_clip_with_runwayml(self, pt, sifnb, tds=4, iip=None):
# ... (Keeping placeholder logic) ...
if not self.USE_RUNWAYML or not self.runway_api_key: logger.warning("RunwayML disabled."); return None
ovfn = sifnb.replace(".png", "_runway.mp4")
ovfp = os.path.join(self.output_dir, ovfn)
logger.info(f"RunwayML (Placeholder) for: {pt[:100]}... (Dur: {tds}s)")
return self._create_placeholder_video_content(f"[RunwayML Placeholder] {pt}", ovfn, duration=tds)
def _create_placeholder_video_content(self, td, fn, dur=4, sz=None):
# ... (Keeping placeholder logic) ...
if sz is None: sz = self.video_frame_size
fp = os.path.join(self.output_dir, fn)
tc = None
try:
tc = TextClip(td, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=sz, method='caption').set_duration(dur)
tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Placeholder video: {fp}"); return fp
except Exception as e: logger.error(f"Placeholder video error {fp}: {e}", exc_info=True); return None
finally:
if tc and hasattr(tc, 'close'): tc.close()
def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
# ... (Keeping this method as it was, it calls the above helpers) ...
base_name, _ = os.path.splitext(scene_identifier_filename_base)
asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_prompt_text, 'error_message': 'Generation not attempted'}
if generate_as_video_clip and self.USE_RUNWAYML:
video_path = self._generate_video_clip_with_runwayml(image_prompt_text, base_name, runway_target_duration, input_image_for_runway)
if video_path and os.path.exists(video_path): return {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
else: logger.warning(f"RunwayML failed for {base_name}. Fallback to image."); asset_info['error_message'] = "RunwayML failed."
image_filename_with_ext = base_name + ".png"; filepath = os.path.join(self.output_dir, image_filename_with_ext); asset_info['type'] = 'image'
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_r, att_n = 2, 0
for att_n in range(max_r):
try:
logger.info(f"Attempt {att_n+1} DALL-E: {image_prompt_text[:100]}...")
cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
r = cl.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
iu = r.data[0].url; rp = getattr(r.data[0], 'revised_prompt', None)
if rp: logger.info(f"DALL-E revised: {rp[:100]}...")
ir = requests.get(iu, timeout=120); ir.raise_for_status()
id = Image.open(io.BytesIO(ir.content));
if id.mode != 'RGB': id = id.convert('RGB')
id.save(filepath); logger.info(f"DALL-E saved: {filepath}");
return {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': rp}
except openai.RateLimitError as e: logger.warning(f"OpenAI Rate Limit {att_n+1}: {e}. Retry..."); time.sleep(5*(att_n+1)); asset_info['error_message']=str(e)
except Exception as e: logger.error(f"DALL-E error: {e}", exc_info=True); asset_info['error_message']=str(e); break
if asset_info['error']: logger.warning(f"DALL-E failed after {att_n+1} attempts. Pexels fallback...")
if self.USE_PEXELS and (asset_info['error'] or not (self.USE_AI_IMAGE_GENERATION and self.openai_api_key)):
pqt = scene_data.get('pexels_search_query_๊ฐ๋
', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pp = self._search_pexels_image(pqt, image_filename_with_ext)
if pp: return {'path': pp, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pqt}"}
cem = asset_info.get('error_message', ""); asset_info['error_message'] = (cem + " Pexels failed.").strip()
if not asset_info['error']: logger.warning("Pexels failed (DALL-E not tried).")
if asset_info['error']:
logger.warning("All methods failed. Placeholder image.")
ppt = asset_info.get('prompt_used', image_prompt_text)
php = self._create_placeholder_image_content(f"[Fallback Placeholder] {ppt[:100]}...", image_filename_with_ext)
if php: return {'path': php, 'type': 'image', 'error': False, 'prompt_used': ppt}
else: cem=asset_info.get('error_message',"");asset_info['error_message']=(cem + " Placeholder failed.").strip()
return asset_info
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
# ... (Keeping this method as it was - robust enough) ...
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("ElevenLabs conditions not met. Skip audio."); return None
afp = os.path.join(self.output_dir, output_filename)
try:
logger.info(f"ElevenLabs audio (Voice: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
asm = None
if hasattr(self.elevenlabs_client,'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech,'stream'): asm=self.elevenlabs_client.text_to_speech.stream; logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client,'generate_stream'): asm=self.elevenlabs_client.generate_stream; logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client,'generate'):
logger.info("Using 11L .generate() (non-streaming).")
vp = Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
ab = self.elevenlabs_client.generate(text=text_to_narrate, voice=vp, model="eleven_multilingual_v2")
with open(afp,"wb") as f: f.write(ab)
logger.info(f"11L audio (non-streamed): {afp}"); return afp
else: logger.error("No recognized 11L audio gen method."); return None
if asm:
vps = {"voice_id":str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings,'model_dump'): vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings,'dict'): vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
else: vps["voice_settings"]=self.elevenlabs_voice_settings
adi = asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
with open(afp,"wb") as f:
for chunk in adi:
if chunk: f.write(chunk)
logger.info(f"11L audio (streamed): {afp}"); return afp
except Exception as e: logger.error(f"11L audio error: {e}", exc_info=True)
return None
# =========================================================================
# ASSEMBLE ANIMATIC - FOCUS OF CORRUPTION DEBUGGING
# =========================================================================
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list:
logger.warning("No asset data provided for animatic assembly.")
return None
processed_moviepy_clips = []
narration_audio_clip = None
final_composite_clip_obj = None
logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path = asset_info.get('path')
asset_type = asset_info.get('type')
target_scene_duration = asset_info.get('duration', 4.5)
scene_num = asset_info.get('scene_num', i + 1)
key_action = asset_info.get('key_action', '')
logger.info(f"Processing S{scene_num}: Path='{asset_path}', Type='{asset_type}', TargetDur='{target_scene_duration}'s")
if not (asset_path and os.path.exists(asset_path)):
logger.warning(f"S{scene_num}: Asset not found at '{asset_path}'. Skipping."); continue
if target_scene_duration <= 0:
logger.warning(f"S{scene_num}: Invalid duration ({target_scene_duration}s). Skipping."); continue
current_scene_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path)
logger.debug(f"S{scene_num}: Loaded image. Mode: {pil_img.mode}, Size: {pil_img.size}")
# --- Robust Image Processing Pipeline for MoviePy ---
# 1. Convert to RGBA for consistent alpha handling
img_rgba_source = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
# 2. Thumbnail
img_thumbnail = img_rgba_source.copy()
resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else Image.BILINEAR
img_thumbnail.thumbnail(self.video_frame_size, resample_filter)
logger.debug(f"S{scene_num}: Thumbnailed to: {img_thumbnail.size}")
# 3. Create RGBA canvas and paste image onto it (centers and handles transparency)
canvas_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0)) # Transparent background
xo = (self.video_frame_size[0] - img_thumbnail.width) // 2
yo = (self.video_frame_size[1] - img_thumbnail.height) // 2
canvas_rgba.paste(img_thumbnail, (xo, yo), img_thumbnail) # Use thumbnail's alpha as mask
# 4. Convert to final RGB image (flattens alpha against black) for MoviePy
final_rgb_image_for_moviepy = Image.new("RGB", self.video_frame_size, (0, 0, 0)) # Black background
final_rgb_image_for_moviepy.paste(canvas_rgba, mask=canvas_rgba.split()[3]) # Use alpha of canvas_rgba as mask
debug_canvas_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png")
try: final_rgb_image_for_moviepy.save(debug_canvas_path); logger.info(f"DEBUG: Saved PRE-NUMPY image for S{scene_num} to {debug_canvas_path}")
except Exception as e_save: logger.error(f"DEBUG: Error saving PRE-NUMPY image for S{scene_num}: {e_save}")
# 5. Convert to C-contiguous NumPy array, dtype uint8
frame_np = np.array(final_rgb_image_for_moviepy, dtype=np.uint8)
if not frame_np.flags['C_CONTIGUOUS']:
frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8)
logger.debug(f"S{scene_num}: Ensured NumPy array is C-contiguous.")
logger.debug(f"S{scene_num}: Final NumPy for MoviePy. Shape: {frame_np.shape}, Dtype: {frame_np.dtype}, Contiguous: {frame_np.flags['C_CONTIGUOUS']}")
if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3:
logger.error(f"S{scene_num}: Invalid NumPy array shape/size for ImageClip. Shape: {frame_np.shape}. Skipping."); continue
# --- End Robust Image Processing ---
current_clip_base = ImageClip(frame_np, transparent=False).set_duration(target_scene_duration)
logger.debug(f"S{scene_num}: Base ImageClip created.")
# --- DEBUG: Save frame from MoviePy ImageClip object ---
moviepy_frame_debug_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png")
try:
current_clip_base.save_frame(moviepy_frame_debug_path, t=0.1) # Save a frame at 0.1s
logger.info(f"DEBUG: Saved frame FROM MOVIEPY ImageClip for S{scene_num} to {moviepy_frame_debug_path}")
except Exception as e_save_mv_frame:
logger.error(f"DEBUG: Error saving frame FROM MOVIEPY ImageClip for S{scene_num}: {e_save_mv_frame}", exc_info=True)
# --- End DEBUG ---
current_scene_clip_with_fx = current_clip_base
try: # Ken Burns
end_scale = random.uniform(1.03, 1.08)
current_scene_clip_with_fx = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration) if target_scene_duration > 0 else 1).set_position('center')
except Exception as e_fx: logger.error(f"S{scene_num}: Ken Burns error: {e_fx}. Using static.", exc_info=False)
current_scene_clip = current_scene_clip_with_fx
elif asset_type == 'video':
# ... (Video processing logic - keep as in previous good version) ...
source_video_clip = None
try:
source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None)
temp_clip = source_video_clip
if source_video_clip.duration != target_scene_duration:
if source_video_clip.duration > target_scene_duration: temp_clip = source_video_clip.subclip(0, target_scene_duration)
else: # Source is shorter
if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1: temp_clip = source_video_clip.loop(duration=target_scene_duration)
else: temp_clip = source_video_clip.set_duration(source_video_clip.duration); logger.info(f"S{scene_num}: Video clip ({source_video_clip.duration:.2f}s) shorter than target ({target_scene_duration:.2f}s).")
current_scene_clip = temp_clip.set_duration(target_scene_duration)
if current_scene_clip.size != list(self.video_frame_size): current_scene_clip = current_scene_clip.resize(self.video_frame_size)
except Exception as e_vid_load: logger.error(f"S{scene_num}: Error loading/processing video '{asset_path}': {e_vid_load}", exc_info=True); continue
finally:
if source_video_clip and source_video_clip is not current_scene_clip and hasattr(source_video_clip, 'close'): source_video_clip.close()
else: logger.warning(f"S{scene_num}: Unknown asset type '{asset_type}'. Skipping."); continue
if current_scene_clip and key_action: # Add text overlay
try:
txt_clip = TextClip(f"Scene {scene_num}\n{key_action}",
fontsize=self.video_overlay_font_size, color=self.video_overlay_font_color,
font=self.video_overlay_font, bg_color='rgba(10,10,20,0.7)',
method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
kerning=-1, stroke_color='black', stroke_width=1.5
).set_duration(min(current_scene_clip.duration - 0.5, current_scene_clip.duration * 0.8) if current_scene_clip.duration > 0.5 else current_scene_clip.duration).set_start(0.25).set_position(('center', 0.92), relative=True)
current_scene_clip = CompositeVideoClip([current_scene_clip, txt_clip], size=self.video_frame_size, use_bgclip=True)
except Exception as e_txt: logger.error(f"S{scene_num}: Error with TextClip: {e_txt}. Using clip without text.", exc_info=True)
if current_scene_clip: processed_moviepy_clips.append(current_scene_clip); logger.info(f"S{scene_num}: Asset processed. Clip duration: {current_scene_clip.duration:.2f}s.")
except Exception as e_asset_proc: logger.error(f"MAJOR Error S{scene_num} ({asset_path}): {e_asset_proc}", exc_info=True)
finally: # Close individual clips if an error occurred during their specific processing
if current_scene_clip and hasattr(current_scene_clip, 'reader') and current_scene_clip.reader:
if hasattr(current_scene_clip, 'close'): current_scene_clip.close()
elif current_scene_clip and hasattr(current_scene_clip, 'close'): current_scene_clip.close()
if not processed_moviepy_clips: logger.warning("No clips processed. Aborting."); return None
transition_duration = 0.75
try:
logger.info(f"Concatenating {len(processed_moviepy_clips)} clips.")
if len(processed_moviepy_clips) > 1: final_composite_clip_obj = concatenate_videoclips(processed_moviepy_clips, padding = -transition_duration if transition_duration > 0 else 0, method="compose")
elif processed_moviepy_clips: final_composite_clip_obj = processed_moviepy_clips[0]
if not final_composite_clip_obj: logger.error("Concatenation failed."); return None
logger.info(f"Concatenated clip duration: {final_composite_clip_obj.duration:.2f}s")
if transition_duration > 0 and final_composite_clip_obj.duration > 0:
if final_composite_clip_obj.duration > transition_duration * 2: final_composite_clip_obj = final_composite_clip_obj.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
else: final_composite_clip_obj = final_composite_clip_obj.fx(vfx.fadein, min(transition_duration, final_composite_clip_obj.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_composite_clip_obj.duration > 0:
try: narration_audio_clip = AudioFileClip(overall_narration_path); final_composite_clip_obj = final_composite_clip_obj.set_audio(narration_audio_clip); logger.info("Narration added.")
except Exception as e_audio: logger.error(f"Adding narration error: {e_audio}", exc_info=True)
elif final_composite_clip_obj.duration <= 0 : logger.warning("Video has no duration. Audio not added.")
if final_composite_clip_obj and final_composite_clip_obj.duration > 0:
output_path = os.path.join(self.output_dir, output_filename)
logger.info(f"Writing final video: {output_path} (Duration: {final_composite_clip_obj.duration:.2f}s)")
# --- Test different write parameters if corruption persists ---
final_composite_clip_obj.write_videofile(
output_path, fps=fps, codec='libx264',
preset='medium', # Changed from ultrafast for potentially better encoding
audio_codec='aac',
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k"
# ffmpeg_params=["-pix_fmt", "yuv420p"] # Potentially force pixel format if issues persist
)
logger.info(f"Video created: {output_path}"); return output_path
else: logger.error("Final clip invalid. Not writing."); return None
except Exception as e_write: logger.error(f"Video writing error: {e_write}", exc_info=True); return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
clips_to_close = processed_moviepy_clips + ([narration_audio_clip] if narration_audio_clip else []) + ([final_composite_clip_obj] if final_composite_clip_obj else [])
for clip_obj in clips_to_close:
if clip_obj and hasattr(clip_obj, 'close'):
try: clip_obj.close()
except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {e_close}") |